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Foreword

The ability to model vehicular flows in traffic networks under real-time information, and to
provide system users with route guidance information, constitute essential methodological
components required to support the successful operation of Advanced Traveler Information
Systems and Advanced Traffic Management Systems. This report describes the
methodologies and procedures developed through a contract to the University of Texas at
Austin, in collaboration with the University of Maryland, to address these essential needs.
Specifically, a simulation-assignment methodology has been developed to describe user’s
path choices in the network in response to real-time information, and the resulting flow
patterns that propagate through the network, yielding information about overall quality of
service and effectiveness, as well as localized information pointing to problem spots and
opportunities for improvement. This methodology is intended for use off-line for evaluation
purposes, or on-line for prediction purpose in support of advanced traffic management
functions. In additional, algorithmic procedures have been developed to determine the best
paths to which users should be directed so as to optimize overall system performance.
Powerful extensions to incorporate multiple user classes are also described as well as
strategies for real-time operational implementation. Taken collectively, and individually, the
procedures described in this report constitute a significant advancement in the state of the art
of traffic modelling and dynamic network analysis, and an important step towards the
realization of intelligent vehicle-highway systems.

Notice

This document is disseminated under the sponsorship of the Department of Transportation in
the interest of information exchange. The United States Government assumes no liability for
its contents or use thereof.

The contents of this report reflect the view of the contractor who is responsible for the
accuracy of the data presented herein. The contents do not necessarily reflect the official
policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade or
manufactures’ names appear herein only because they are considered essential to the object of
this document.
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Preface

This report describes the procedures developed under Tasks B and C of project DTFH61-90-
R-00074, “Traffic Modelling to Support Advanced Driver Information Systems (ADIS)“.
The objectives of these tasks are to develop dynamic assignment and traffic simulation
models that can be used to support the functional operating core of ATIS (Advanced Traveler
Information Systems) and ATMS (Advanced Traffic Management Systems).

Two principal functions are addressed by the assignment-simulation models in an
ATIS/ATMS context. The first consists of determining, in real-time, the network paths to
which the drivers should be directed in going toward their destination, so as to achieve
system-level objectives. The second is the prediction or description of the time-varying link
flows patterns that result from the path choices made by motorists in response to supplied
route guidance, traffic control actions, or other forms of information.

The procedures developed to address the first capability incorporate the second capability as
a sub-problem. The dynamic traffic assignment algorithm developed to address the first
capability is an interactive procedure, within which a traffic simulation capability is required.

This report first describes DYNASMART, a simulation-assignment framework that meets all
functional requirements for ATIS/ATMS applications. It satisfies the second capability
indicated above. In addition to describing its conceptual and mathematical aspects,
implementation issues are extensively discussed, and results of application examples are
presented.

Next, the algorithmic procedures for the dynamic assignment capability described above are
developed and documented, including special requirements for multiple user classes. A
rolling horizon framework for on-line implementation is developed. Computational tests are
also presented.

The report also describes the extensive path processing capabilities developed in conjunction
with the above procedures.

The methodologies developed in this report represent a significant advance in the state-of-
the-art of network assignment and traffic simulation, and form the basis of the new
generation of modeling approaches and advanced methodologies needed to support emerging
IVHS technologies.
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CHAPTER 1
INTRODUCTION

MOTIVATION
Applications of advanced technologies in telecommunications, information technology,

microprocessors and automation to intelligent vehicle-highway systems provide new
opportunities to improve the performance of traffic networks under both recurrent and non-
recurrent congestion. For instance, Advanced Traveler Information Systems (ATIS) and
Advanced Traffic Management Systems (ATMS) will provide drivers the capability to
communicate with the network control center on a real-time basis.

However, the sophistication in technological and hardware capabilities needs to be
matched by more powerful methodological and algorithmic constructs than presently
available, especially for real-time control in large-scale traffic systems. This report
describes the procedures developed to address the critical need for dynamic route
assignment and associated real-time network traffic simulation capabilities.

PROBLEM DEFINITION
The problem addressed in this study consists of the specification and development of

dynamic network assignment capabilities and associated traffic performance simulation
capabilities that will be necessary to achieve the potential of in-vehicle route guidance
Advanced Traveler Information Systems (ATIS) in conjunction with Advanced Traffic
Management Systems (ATMS) for improving the productivity and efficiency of traffic
networks under recurrent and non-recurrent congestion. The dynamic assignment
capabilities required must serve the following principal functions:

1. Allow a central controller, with partial or complete information about time-
dependent origin destination (O-D) trip desires as well as current link status conditions
(loadings, prevailing link travel times, capacity reducing incidents), to route all trips from
their current position (including initial origins and intermediate locations) to their respective
destinations so as to achieve system-wide objectives, subject to certain constraints. In
other words, the controller seeks to direct users to routes that somehow “optimize” the
overall performance of the system, subject to reasonableness and fairness constraints for
individual users. This information would form the basis of route guidance instructions to
be provided to suitably equipped vehicles on a real-time basis. This capability then reflects
a normative perspective, and gives rise to a system optimal dynamic assignment problem.



In solving this problem, the controller needs to consider the presence of multiple classes of
users in terms of access to information, types of available information, and behavior in
response to this information, This capability would be used primarily on-line for the above
purpose, or off-line to determine initial assignments and routing schemes for the routine
and historically known trip patterns, which would subsequently be updated on-line.

2. Allow the controller or analyst to determine, for known O-D trip desires, the time
varying link flow patterns that result from the path choice decisions made by motorists, in
response to real-time information supplied by the ATIS controller. This on board
information might consist of specific route guidance instructions, or of prevailing and/or
predicted link trip times, subjected to varying degrees of on-board and/or central
processing. This descriptive assignment capability is needed off-line to evaluate alternative
traffic control schemes, information supply strategies, and/or normative routing and
assignment approaches, as well as on-line in connection with a model system to determine
what information to provide to motorists. This capability is also needed as a support
function for Advanced Traffic Management Systems (ATMS).

Both types of assignment capabilities require the network traffic simulation capability
to determine the principal figures of merit that describe the performance of the system,
particularly the link trip times, for a given dynamic assignment pattern (i.e., time-dependent
link flow patterns), for both on-line and off-line use.

In addition to the conceptual and algorithmic aspects of the above models, the
computational issues associated with their implementation for real-time operation constitute
an integral element of the problem. In particular, the development of algorithmic
procedures must consider the issue of computational efficiency in novel computing
architectures with varying forms and degrees of parallelism.,

OBJECTIVES AND STRUCTURE OF THE REPORT
This report describes the conceptual, mathematical and algorithmic aspects of the

procedures developed to provide the dynamic assignment and associated simulation
functions described in the previous section. In addition, it describes the implementation of
these procedures into computer code, and gives illustrative results of computational
applications to test networks.

The review of existing procedures for dynamic assignment and traffic simulation, and
their limitations vis-a-vis ATIS/ATMS applications have been presented in a separate
project report (Mahmassani, et al., 1992), and will not be repeated here.



The DYNASMART simulation-assignment framework, which addresses the second
(descriptive) capability stated in the previous section, is described in Chapter 2. The
functional requirements for ATIS/ATMS applications, as set forth by the project Statement
of Work prepared by FHWA, are first reviewed, as these have guided the development of
the various capabilities of the modelling framework. Chapter 3 focuses on implementation
and computational issues, and reports the results of several numerical experiments with
DYNASMART.

Chapters 4 and 5 address the dynamic assignment capability stated first in the previous
section. Chapter 4 develops the conceptual and mathematical formulations of the problem,
and describes the algorithmic procedures designed for the solution of both System Optimal
(SO) and User Equilibrium (UE) versions of the problem, for a single class of users.
Results of computational experiments are also discussed, highlighting the potential benefits
of SO assignment.

Chapter 5 extends the procedures described in Chapter 4 to the more general and
realistic case of multiple user classes. In this case, only a fraction of users receive SO
information, while others may follow UE principles or other behavioral rules. A rolling
horizon framework for the on-line real-time application of these procedures is also
described.

Chapters 6 and 7 focus on the path processing procedures developed as essential
components of both the DYNASMART simulation-assignment framework and the
normative dynamic assignment models. Several types of path processing needs are
encountered in these problems, including the computation of k-shortest paths and the
computation of time-dependent shortest and least-cost paths. In addition, special
implementation issues associated with turning movements and multiple user classes are also
addressed. Because of the computational intentiveness of path calculations in the context of
the assignment and simulation procedures, particular attention is directed at optimizing their
computational performance.

Finally, concluding comments are presented in Chapter 8.



CHAPTER 2
DYNASMART

INTRODUCTION
This chapter documents the development of DYNASMART, a network assignment-

simulation modelling framework designed to assign time-varying traffic demands and
model the corresponding traffic patterns to evaluate overall network performance of ATIS
and/or ATMS. In its present form, DYNASMART is primarily a descriptive analysis tool
for the evaluation of information supply strategies, traffic control measures and route
assignment rules at the network level. However, it is evolving towards a model that may
be executed on-line in quasi real-time to support the functions of the system controller in
the ATIS/ATMS. The model is designed to meet functional requirements set forth by
FHWA for ATMS/ATIS applications, including sensitivity to a wide range of traffic control
measures for both intersections and freeways, capability to model traffic disruptions due to
incidents and other occurrences, representation of several user classes corresponding to
different vehicle performance characteristics, different information availability status and
different behavioral rules. DYNASMART is based on the assignment-simulation model
developed by Mahmassani and Jayakrishnan (1990, 1991) at the University of Texas at
Austin. The structure, capabilities and principal modelling features of DYNASMART are
examined in this chapter. Implementation issues, numerical results and computational tests
are discussed in Chapter 3.

Functional Requirements
Traffic simulation models for surface street networks and for freeways have

historically developed independently; therefore, these models by themselves are not
appropriate to evaluate a traffic system or to predict traffic patterns for an ATIS/ATMS. A
traffic simulation model for use in connection with ATIS/ATMS should be able to simulate
both freeways and arterial streets as an integrated network. The control strategies for
different sub-networks can thus be coordinated and operated efficiently. In addition, there
are several functional requirements set forth by FHWA for ATIS/ATMS applications that
need to be incorporated in the simulation-assignment model. These are summarized as
follows:
A. Functional Requirements for Surface Streets

1. Realistic representation of changes in traffic signal control. ,
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2. Capable of modelling various types of link geometric configurations.
3. Precise simulation of traffic related effects.
4. Concise but precise measurement of the system effectiveness on both a link specific

and network wide bases.
5. Capable of simulating trip generation and attraction centers, and bus operations as

well as related facilities.
B . Functional Requirements for Freeway Systems

1. Realistic representation of traffic characteristics and geometric configurations.
2. Detailed simulation of ramp flow characteristics and traffic control strategies.
3. Concise output statistics for measurement of the effectiveness on both a link specific

and network-wide bases.
C. Special Functional Requirements for Use in ATIS systems

1. Able to simulate traffic flows at the individual vehicle/driver level.
2. Able to model the route choice behavior of drivers with and without the access to

ATIS systems.
3. Capable of accepting data from both the surveillance and historical traffic

information at a user specified time period.
4. Responsive to dynamic OD information reported by the ATIS system.
5. Able to track the route and location of each driver who accepts the route advice from

the control center.

Features of DYNASMART
DYNASMART has been conceived and developed as an integrated simulation-

assignment model which meets and in many respects exceeds the requirements for ATIS
and ATMS applications. The flexible framework of DYNASMART allows users to add
independent modules for future developments. This modularity and flexibility are essential
in a rapidly evolving area such as M-IS, where emerging knowledge on aspects such as
user behavior and response to traffic information, as well as new traffic control schemes
must be incorporated in the dynamic assignment-simulation framework. Although
DYNASMART is still a descriptive model, it can be incorporated within other algorithmic
frameworks for optimization purposes, The special features in DYNASMART to date are
summarized as follows:
1. Simulate traffic flow at the individual or packet level (according to macroscopic

traffic relations).
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2. Model the path selection decisions of individual travelers, both en-route and at the
trip origins.

3. Model multiple user classes corresponding to different vehicle performance
characteristics, information availability, and different behavioral rules.

4. Track the route and location of vehicles, individually or in packets.
5. Model different control strategies for both freeway systems and surface streets.
6. Model traffic disruptions due to incidents and other occurrences.
7. Simulate different signal control strategies
8. Provide the model users with three output levels ( system, link and vehicle )
9. Provide an experimental graphic subsystem in Xwindow.

DYNASMART MODEL STRUCTURE
Several approaches have been applied to evaluate traffic systems under ATIS/ATMS,

including analytical methods, assignment-based models and simulation-based models.
Because of the complexity of the problem and the issues involved, a model for evaluating
system performance for ATIS/ATMS with adequate realism needs to combine the concepts
and features of simulation and assignment methodologies. In light of the limitations of
existing traffic simulation models, as well as those of network assignment models, for
ATIS/ATMS applications, four possible development strategies were identified:
1. Interface existing traffic simulation models and network assignment models.
2. Add network path processing and route choice capabilities to an existing traffic

simulation package.
3. Add dynamic traffic flow simulation capability to an existing (static, by necessity)

network assignment package.
4. Configure a simulation-assignment model structure to best fit the functional

requirements of the ATIS/ATMS context.
DYNASMART is based on the fourth strategy. Its overall structure is shown in

Figure 1. The approach adopted in DYNASMART integrates traffic flow models, path
processing methodologies, behavioral rules and information supply strategies into a single
simulation-assignment framework. The input data include time-dependent OD matrices and
network data. At the core of the framework, and essential to its flexibility and efficiency, is
an integrated network representation system that supports extremely efficient path
processing routines, which provide essential information to both user behavior models as
well as information supply strategies.

6











algorithm with movement penalties is interfaced with the simulation model to calculate K
different paths for every origin-destination pair. However, in order to improve the model’s
computational performance, the K-shortest paths are not re-calculated every simulation time
step, but only at pre-specified intervals. In the interim, the travel times on the set of K
current paths are updated using the prevailing link travel times at each simulation time step,
or every few steps to further reduce computational requirements. The K-shortest path
algorithms and computational experiments are further described in Chapters 6 and 7. There
are two important ways that this path information is used:

1. Initial Routes
At the beginning of trips, non-equipped drivers need to be assigned to specific paths or

initial routes. While there is no universally agreed upon process for assigning initial
routes, some researchers have suggested user equilibrium or stochastic user equilibrium
assignment for these initial routes. In DYNASMART, initial routes are modelled in an
explicit way, allocating drivers to the K-shortest paths according to a pre-specified rule. Of
course, when DYNASMART is used as a simulator in conjunction with an algorithmic
search procedure, initial paths may be determined by the search. In practice, such
assignments for some vehicles may also be available from historical information based on
actual measurements.

2. Current Path Information
Current path information forms the basis of driver path choice decisions at every node

according to the user behavior component module. In its present version, only current trip
times are available to drivers. The current  path information is used in equipped vehicles as
well as in Variable Message Signs (VMS) route control module. The latter is explained
further in the VMS sections. A time-dependent K-shortest path routine has also been
developed and could be incorporated within DYNASMART to simulate anticipatory
information supply strategies. Such “anticipatory” strategies are now provided with the
system optimal, user equilibrium or multiple user class assignment algorithms discussed in
Chapters 4 and 5. Additional anticipatory strategies with predicted time-dependent trip
times can also be easily implemented if a data fusion and prediction function is provided (in
a separate module).
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TRAFFIC SIMULATION IN DYNASMART
DYNASMART uses macroscopic traffic models to quantify interactions among

vehicles and calculate movements of vehicles along links. However, there are features that
need to be included in order to capture traffic complexities and provide essential capabilities
for ATIS/ATMS applications. This section addresses these features in the modeling
process.

Table 1. Traffic Control Strategies in DYNASMART

Surface Street Freeway System

I. Control Types
a. No Control
b. Yield Control
c. Stop signs
d. Signal Control

(green,red,amber time, cycle
time, offsets, phases)

Pretimed
Pretimed Coordinated
Multidial pretimed
Actuated ( full )

a. Ramp metering
b. Changeable message signs

II.

III.

Geometric Configurations
a. Saturation Flow Rate
b. Number of Lanes
c. Number of Approaches

Measure of Effectiveness
a. Average Speed
b. Average Travel Time
c. Average Delay

a. Number of lanes
b. Capacity
c. HOV lanes

a. Average Speed
b. Average Density
c. Average Ramp Queue Length

Traffic Control Elements
DYNASMART provides the ability to explicitly model an array of control elements,

listed in Table 1. The major element for surface streets is signal control, which includes
pretimed control and actuated control. Ramp metering and variable message signs (VMS)
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are the major controls for the freeway system. The geometric configurations and measures
of effectiveness which are to be included are also listed in Table 1. The following sections
address these elements in detail.

Capacity Control
The node transfer is designed to simulate the input and output flows of vehicles on

each approach at intersections operating under a number of control strategies. It calculates
the number of vehicles that traverse each intersection in the network during each simulation
time step as well as the number of vehicles entering and exiting the network. Several
concepts regarding the modelling of vehicle flows in the node transfer are discussed
hereafter, in particular: outflow and inflow capacity constraints, equivalent green time for
unsignalized intersections, and signalized control.

Outflow Capacity Constraints
The outflow constraints limit the maximum number of vehicles allowed to leave each

approach lane at an intersection. These constraints are described in the following equation
which states that the total number of vehicles that enter an intersection (from a given
approach) depends on the number of vehicles waiting in the queue at the end of the current
simulation interval (time step), AT, and the capacity of this approach. The definition of
capacity follows the 1985 HCM, and consists of the maximum number of vehicles that can
be served under prevailing traffic signal operation.

VIi=Min {VQi;VSi}
where,

VIi : maximum number of vehicles that can enter the intersection during A T,
VQi : number of vehicles in queue on link i at the end of A T,
VSi : maximum number of vehicles can enter the intersection during A T, i.e. Gi Si
Gi : remaining effective green time during A T,
Si : saturation flow rate, and
A T : the simulation interval.

Inflow Capacity Constraints
The inflow constraints determine the maximum number of vehicles allowed to enter a

link. These constraints bound the total number of vehicles from all approaches that can be
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If CVi is less than the maximum number of allowable vehicles, the green time will be
reduced accordingly. These calculations are performed at the end of the current cycle.
Cycle length will change every cycle. This modeling will be fairly accurate in allocating
green time as congestion increases in the network. It will be somewhat less accurate under
light traffic conditions; however the dynamic assignment capability in ATMS is of primary
concern during congested periods.

In the second method, the green time for a given phase is determined based on the
number of vehicles that would have reached the intersection at the end of the current
simulation interval. This green is subsequently extended as appropriate each simulation
interval until “max out” is reached, or terminated if no longer needed, thereby emulating
“gap out”. This second method does not require a default cycle length, and may skip a
phase altogether if no vehicle demand exists and no minimum green is specified.

Real-Time Signal Control
DYNASMART provides an independent module for real time signal control which

gives an interface to update signal parameters during the simulation. These parameters can
be controlled by user specified rules or prepared exogenously in advance. The module is
intended to assist in testing different real time control strategies.

Communication Interface between Simulation and Path Processing
In DYNASMART, the path processing component utilizes the travel time information

generated from the simulation. The travel time information for links is separated into two
parts : travel time for vehicle movement and queueing time. Traffic on each link segment is
modelled as consisting of two parts (as shown in Figure 2): those vehicles in the upstream,
moving part, and those in the downstream, queueing part.

Moving  Vehicles in
Vehicles  Queue

I
Figure 2. Conceptual Portions on a Link Segment
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FREEWAY CONTROL
Freeway management techniques can be categorized as capacity management and

demand management. Capacity management, such as ramp control and variable speed
control, tries to maximize throughput and maintains a certain level of service. Demand
management, on the other hand, attempts to reduce the number of vehicles at the peak
period. In DYNASMART, two important elements of freeway management are
implemented, namely, entrance ramp control and HOV lanes. In addition, variable
message signs (including speed control for mainline regulation) may be modelled, though
these are not limited to freeway links.

Ramp Control
Ramp control is the most widely used freeway control measures. Its purpose is to

limit the number of entering vehicles in order to maintain a satisfactory level of service
within capacity limit. Ramp control includes entrance ramp control as well as exit ramp
control. Since exit ramp control is seldom used, it is not explicitly modeled in
DYNASMART. However, it could be simulated through other built-in modules, such as
lane closure and VMS. According to the Traffic Control Systems Handbook, (FHWA,
1985) there are five types of entrance ramp control: closure, ramp metering, traffic-
responsive metering, gap-acceptance merge control and integrated ramp control. The first
three methods, explicitly modelled in DYNASMART, are explained as follows:

1. Closure
For ramp closure, drivers need to select alternate routes to their destination. Since

equipped vehicles receive current traffic information, they can respond to ramp closure
before they reach the ramp. On the other hand, non-equipped vehicles do not have this
advantage, so they will choose another route after they reach the closed ramp. However,
the VMS can be applied on arterial streets as early warning, so non-equipped vehicles can
be diverted prior to their arrival. The choice of alternate route for non-equipped vehicles
also depends on driver behavior, and requires an observational basis to develop appropriate
path selection rules. DYNASMART provides a flexible way to divert the non-equipped
vehicles which allows users to define a k-th best path number or to randomly choose a path
from path files.
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2. Ramp-Metering
Basically, DYNASMART controls vehicle flow under in-flow and out-flow

constraints. In ramp metering, a fixed ramp rate or a dynamic ramp rate that determines the
maximum number of entering vehicles can be determined in conjunction with the capacity
calculations during a specified time period.

3. Traffic-Responsive Metering
Traffic-responsive metering is directly controlled by the mainline and ramp traffic

conditions during the metering period. Occupancy control and demand control are two
widely used methods for traffic-responsive metering. ALINEA (Papageorgious et al.,
1991), a local feedback control law for on-ramp metering, is implemented in
DYNASMART. A typical feedback law is given as follows:

Rate(T+l) = Rate(T) + Kr ( Ko- OCC)
Kr : rate adjustment parameter (default value 0.32)
Ko : nominal (target) occupancy (default value 0.2)
OCC : detector occupancy
Rate(t) : max: 35 - 25 vehs/min-lane; min: 5 vehs/min-lane

The given default values of Kr and Ko are from numerical results by Joseph (1993), and
are intended for illustrative purposes only.

High-Occupancy Vehicle Priority Control
Priority for high-occupancy vehicles is to provide preferential treatment through HOV

lanes for buses and carpools. The purpose of HOV lanes is to encourage carpools  or buses
in order to reduce overall vehicle demand. Methods of priority control include separated
facilities, reserved lanes, and priority access control. In DYNASMART, HOV lanes are
part of a traffic network represented by links and nodes. In order to preclude non-high-
occupancy vehicles from using the HOV lanes, the travel times on these links are set to
infinity for non-HOV vehicles for the path calculation.

LEFT TURN MOVEMENT
Left-turn movements are a critical delay-causing factor in urban networks. However,

it is very difficult to model the left turn movement in a macroscopic simulation model. In
this section, the left-turn issue is discussed and the modelling process used in
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Then, usable time for left turn vehicles can be calculated as:
Tu=G+(Ta-Ll)-L2-Tb

where,
Tu : usable time of cycle for left-turn ( second)
G : Green time
Ta : amber (yellow) time

The maximum number of possible left turn vehicles is equal to:
n = ( Tu/ h ) +l,, where h : minimum turning headway ( = 2.5 seconds)

Thus, a gap acceptance model (Drew, 1968) can be used to calculate the left turn capacity
as follows:

QL=(Tu/C)QLT

-(Q/36OO)*Tc
Qe

QLT=
l- e-

(Q/3600) h

where,
QL : left turn capacity,
QLT : left turn saturation flow, veh/hr,
Tc : critical gap, seconds, and
h : turning headway, seconds ( = 2.5 seconds).

The modeling process for the left turn is complex and not easy to combine with any
macroscopic simulation. Therefore, a heuristic modeling process is used to capture effects
of left turns in DYNASMART. The process is summarized as follows:
1. Count left-turn vehicles.
2. Calculate maximum flow rate for left-turns;

This rate can be calculated under different situations:
a) Protected left turn phase: saturation flow rate.
b) Permissive phase: from gap acceptance models or established tables.

3. Calculate an average number of left-turn vehicles and also reduce the saturation flow rate
for straight and right-turn approaches.
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4. Follow outflow- inflow constraints to transfer vehicles from link to link.
5. Calculate the left turn delay for the K-shortest path calculation.

Left-turn capacity estimation determines the number of left-turn vehicles which can
enter the intersection without delay due to opposing volume. Different approaches have
been used in determining the left-turn capacity. For example, a gap acceptance model is
applied in TRANSYT 7F for permissive movement (Wallace et al., 1991). A review of
left-turn capacity issues can be found in Lin, et al. (1984). DYNASMART adopted the
left-turn capacity values from Lin et al. (1984) that are derived on simulations using
TEXAS (Lee et al., 1983) model. The left-capacity is determined by several factors, such
as opposing flow, number of opposing lanes, and signal timing). The saturation flow rate
for other movements is adjusted according to 1985 HCM. The left-factor in the adjustment
is based on four variables, namely, exclusive or shared lanes, type of phasing, proportion
of left-turn vehicles, and opposing volume. The left-turn capacity and adjusted saturation
flow rate are used in inflow-outflow capacity constraints.

MULTIPLE USER CLASSES
DYNASMART allows for different classes of users with different information

availability, and/or behavioral responses and/or traffic performance characteristics. Vehicle
classes can differ by vehicle type, network restrictions, and information availability. Since
a variety of attributes are generated for vehicles, vehicles are not identical even within the
same class. Currently, seven different classes are modelled in DYNASMART for
illustration purposes, and more classes can be included. The seven classes are:
1. non-equipped passenger car,
2. non-equipped truck,
3. non-equipped high occupancy passenger car,
4. equipped passenger car,
5. equipped truck,
6. equipped high occupancy passenger car, and
7. bus.

All the equipped vehicles follow the rules stipulated in the user decisions component.
In the current version, the default is the boundedly rational behavior rule discussed earlier,
with a relative indifference band and a minimum threshold value. Different vehicle sizes
are modelled as packets of different passenger car units, specified by the user. The packet
size is used in calculating concentration, available capacity, inflow and outflow constraints.
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With this ability, DYNASMART can model virtually any network restrictions, such as
turning prohibitions, and special facilities, such as bridges. The HOV concept was
described in a previous section. Bus operation is discussed in a later section.

VARIABLE MESSAGE SIGNS (VMS)
One way to provide dynamic route information to drivers is by means of Variable

Message Signs (VMS) where visual word, number, or symbolic display can be
electronically or mechanically varied according to current traffic conditions. VMS displays
can address a considerably wide range of traffic management functions; however, drivers
are not usually required to follow all messages from VMS. Since the response of drivers to
different VMS is still in need of further study, the use of the VMS module in
DYNASMART should be accompanied by a reasonable assumption on driver behavior.
The VMS module in DYNASMART includes three parts: speed advisory, route advisory
and route warning messages.

Speed Advisory
Speed advisory is mainly used for mainline control of freeway systems; experiments

with speed advisory changes have been undertaken in several European countries.
Through field experiments, it has been reported that reasonable speed limitation during
rush hours increases capacity ( Papageorgiou, 1983). In DYNASMART, speed advisory
applies at VMS locations when the density exceeds a pre specified value. Then, all the
vehicles are assigned the advised speed.

Route Advisory
Route advisory may provide an alternative path for vehicles in order to avoid a

congested section. In DYNASMART, the user needs to define a k-th number of paths (or a
fixed path) to be displayed, and all the vehicles will follow the new path to their
destinations. Of course, a more comprehensive set of response rules will need to be
specified in the user behavior component as results of related targeted research become
available.

Route Warning
This form of real-time information provides instructions for drivers to divert in

advance of a congested section. In the current implementation, the warning message is
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generated when the concentration of downstream link reaches the maximum concentration,
and a given fraction of the vehicles are diverted to other randomly generated routes. The
intent is to retain flexibility to incorporate more complete instructions as ongoing research
into ATMS strategies produces testable concepts.

BUS OPERATIONS
In DYNASMART, buses are treated as packets with predefined paths; each packet

includes two passenger car units. Simulation of bus operations largely depends on related
input information namely:

BUS ID : an identifier for bus
Start Time : the start time of the bus
Average stop (dwell) time
Number of nodes in the route
The sequence of nodes
The activities on links

0: no stop
1: stop at the near side
2: stop at the midblock
3: midblock curb stop ( or bus bay)

During the simulation, each bus is treated as a packet of two passenger car units. In the
link movement, buses are mixed with other vehicles when calculating the prevailing
average speeds and concentration. In the node transfer, capacity with 2 pcu’s is used for
transferring a bus from link to link. Loading and unloading of buses will cause the short
term blockage of traffic, and this situation is modeled in DYNASMART according to the
locations of bus stops. If the location of the stop is near an intersection, one lane of
outflow capacity will be dropped. If the location of a bus stop is in the middle of a block,
the short term blockage will be simulated as a short term incident. The blockage time is
defined as the average dwell time ( user needs to include the average additional time loss
due to starting.) According to the 1985 HCM, where the buses stop in a lane that is not
used by moving traffic (a curb parking lane, or a bus bay), the time loss to other vehicles is
approximately 3 to 4 seconds per bus. The blockage time of midblock curb stop is set as 4
seconds, but can of course be readily changed to reflect actual conditions.

The above modelling of bus operations is not limited to buses, but may also be applied
to any other type vehicle with fixed route and schedule.
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OTHER CONSIDERATIONS
Driver Compliance Factors

Driver compliance factors are modeled as part of the user decisions component.
Several possible rules can be postulated for this behavioral process, and will eventually be
developed based on empirical experimental evidence. The ability of DYNASMART to
explicitly model multiple user classes on the basis of behavioral provides the necessary
flexibility to accomodate a wide range of possible compliance rules.

Output Information
For different analyses, three levels of output can be obtained from DYNASMART:

1. Overall System Performance (the statistics are also reported for different user classes)
l average overall travel time
l average travel (moving) time
l average entry queue time
l average stop time
l average travel distance
l congestion index
l simulation summary report

2. Selective Information
-Link

average speed
average density
average end queue
total number of vehicles passed by

l Vehicle
behavior attributes
travel time
travel distance
travelled path

3. Detailed Information
vehicle trajectories
signal timing
path information
concentration profiles
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Detailed input information and sample output information are included in Appendix A.

Graphic Display Systems
An experimental graphic display system has been developed to assist in the display of

DYNASMART output information. The graphic system creates a network graph with
detailed characteristics, and displays static and dynamic information from DYNASMART
on the graph. The graphic system provides the following features:
1. adding and editing traffic road network elements,
2. displaying dynamic simulation results from DYNASMART,
3. displaying the path data, and
4. displaying vehicle trajectories in the traffic road network.

This program requires an X-window Vl 1 R4 server and a C compiler. It was
originally developed on a Sun Sparc workstation; however, it is portable to most
workstations. With pull down menus and easy-to-use dialog boxes, the system is a
convenient tool to view the complicated simulation results.

There are four windows in this system as shown in Figure 4. The menu bar window
consists of all the available choices: File, Edit, Show, Sim, and Options. The network

display window displays the whole network, with circles as nodes and lines as links. The
dialog window displays the information request from the computer or shows some
instructions for users. The data and information window displays the static and dynamic
traffic simulation data.

MENU BAR

DIALOG

NETWORK DISPLAY BOX

REGION

DATA
&

INFO

LEGEND BOX

Figure 4. Configuration of the Graphic System
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CHAPTER 3
COMPUTATIONAL ISSUES AND NUMERICAL EXPERIMENTS

INTRODUCTION
Numerical experiments are conducted to illustrate different functional features of

DYNASMART. These experiments, performed on a hypothetical test network as well as
the Austin core network, demonstrate various aspects of DYNASMART. Since
DYNASMART is primarily a descriptive analysis tool, detailed input data sets need to be
prepared for proper execution. Data sets are described in a separate Technical Report
(Mahmassani et al., 1993) and illustrated in Appendix A. Due to the critical role of
execution time in real-time control environments, techniques for minimizing execution time
are explored in DYNASMART. Some optimization techniques and features of the CRAY
FORTRAN (CFT77) language are reviewed.

This chapter contains four sections. The first section is concerned with computational
issues, particularly code optimization techniques for FORTRAN program codes. This
section may be skipped by the reader interested only in the substantive traffic aspects of
DYNASMART with no loss of continuity. The next section presents numerical
experiments on DYNASMART, to explain and illustrate various aspects of the program.
The third section discusses computational performance of DYNASMART. Extensions and
applications are briefly discussed in the last section.

COMPUTATIONAL ISSUES
In this section, some FORTRAN program optimization methods are reviewed and

discussed. DYNASMART is written in CRAY FORTRAN. To efficiently utilize the
FORTRAN optimization techniques, some important aspects of CF77 and CRAY YMP are
listed as follows:

1. Compiler CF77
The CF77 compiling system compiles FORTRAN that conforms to the American

National Standards Institute (ANSI) standard, often called FORTRAN 77. The CF77
supports extensions to this standard to offer broader capabilities and to take advantage of
the features of CRAY. The CF77 compiling system, composed of FPP, FMP and the
CFT77, provides different level of parallel abilities, such as autotasking, and microtasking.
Some features of FORTRAN 90 and FORTRAN D are also included in the CF77.
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2. CRAY YMP
- 6 ns clock cycle
-8CPU
- 64 megawords ( 512 megabytes ) of high speed memory
- 512 megawords(4 gigabytes) of SSD ( Solid State Storage Disk)
- 55 GB CRAY high Speed disk storage
- UNICOS 6.1 operating system

Types of Optimization
The purpose of optimization is to produce computer code which can be executed in

less time. This can be achieved by different ways, such as algorithm optimization and code
optimization. Algorithm optimization is to select or develop an algorithm that offers the
best possibility of optimum execution within the hardware and software constraints. Code
optimization consists of making modifications to an existing code to improve execution
time. Optimizing execution of a particular program depends on several factors: utilities
available under the compiler and operating system, and the type of code (for example,
computation-intensive versus I/O-intensive code).

Parallel Programming on CRAY YMP
CRAY YMP has different levels of parallel processing capabilities in both hardware

and software. The evolution of CRAY parallel processing software has followed three
implementation levels: macrotasking, microtasking and autotasking. At the macrotasking
level, programmers need to modify their code to exploit parallelism by the insertion of
library calls provided by CRAY. Microtasking, which inherits the power of macrotasking
uses compiler directives instead of library function calls. The most recent implementation,
autotasking, combines the best aspects of microtasking with automatic compiling process.
In addition, autotasking can exploit parallelism at the Do loop level without extending to
subroutines boundaries. DYNASMART fully utilizes autotasking and microtasking within
program codes. According to CRAY (SG-3074, p.4, 1990), the goals of autotasking can
be summarized as:
1. Detect parallelism automatically and exploit the parallelism without user intervention.
2. Define a syntax by which parallelism is expressed.
3. Define the scope of variables when transforming a program to exploit parallelism.
4. Provide a simple command line interface to autotasking.
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FORTRAN Optimization Guidelines
Even with powerful capability of CRAY, FORTRAN codes need to be carefully

written to exploit parallelism at the compiler and machine levels. Numerous techniques
have been proposed to speed up FORTRAN program codes with CRAY vector and parallel
abilities. However, the critical problem is to identify and remove data and control
dependencies in program codes. Various such techniques have been applied in the
development and prototyping of DYNASMART, and are briefly reviewed in this section.
The intent of this discussion is primarily illustrative, to indicate the kinds of computational
considerations involved in the development process.

Data dependence is present when the input of a particular statement depends in some
fashion on the output of another. Forms of such dependence include flow dependence,
antidependence, and output dependence (Aho et al., 1986). Detecting scalar dependencies
among statements is relatively straightforward: it involves taking the intersection of the
corresponding IN and OUT sets (of variables read and written by the given statements,
respectively). The same strategy also works for arrays, but gives coarse dependent results.
For more accurate information, subscript analysis of array variables needs to be performed.
Testing for dependencies then involves checking whether two subscript expressions could
take on identical values during the execution of the program. Some techniques to overcome
data dependencies are explained later.

In the presence of complex flow control, focusing on data dependence is not sufficient
to transform programs because of the possibility of control dependence. Such dependence
exists between two statements when the execution of one can prevent the execution of the
other.

Generally speaking, FORTRAN statements can be classified into four groups (Allen et
al., 1983):
1. Action Statements -- statements that cause some change in the state of the computation

or produce some important side effect. Examples : assignment, read, write, call.
2. Branch Statements -- statements that make an explicit transfer of control to another

location in the program. Examples : go to.
3. Iterative Statements -- statements that cause another statement or a block of statements

to be iterated. Example : Do loop.
4. Placeholder statements -- statements that take no action but can be used as

placeholders for the computation. Example : continue statement.
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Control dependence takes place in branch statements, which transfer control to another
statement. For the purpose of analysis, branches are categorized into three types:

1. Exit Branch: a branch that terminates one or more loops, as in

DO 100 I = 1,100
lF(S1) GOT0 200

100 CONTINUE
----
200 CONTINUE

2. Forward Branch: a branch whose target occurs after the branch but at the same loop
nesting level.

DO 100 I =l,l0
lF(S1) GOT0 100
s2

100 CONTINUE

3. Backward Branch: a branch to a statement occurring lexically before the branch but at the
same nesting level, as in

10 
S2 

Sl

IF(S3) GOT0 10

In accordance with this classification, IF conversion uses two different
transformations to eliminate branches within the program:

1. Branch Relocation
Branch relocation moves branches out of loops until the branch and its target are

nested in the same number of DO loops. This procedure converts each exit branch into
either a forward branch or a backward branch.

2. Branch Removal
Branch removal eliminates forward branches by computing guard expressions (a

Boolean expression which represents the conditions under which the statement is executed)
for action statements under their control and conditioning execution on these expressions.

Further techniques can be found in Allen et al. (1983).
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Techniques and algorithms for code improvement on the basis of data flow
information can be found in Aho et al. (1986). These techniques include global common
sub-expression elimination, copy propagation, code motion, and elimination of induction
variables. Some practical examples are described in Brawer (1989). A common example
of a data dependency is a situation in which a variable (scalar or array element) assigned in
one iteration of a loop is read in another iteration, e.g:

do i=l,n
sum = sum +a(i)
end do
Data dependencies complicate the parallel execution of programs as they normally

require that the statements of the loop be executed in a particular sequential order. Some
techniques and examples to eliminate data dependencies are described hereafter (these may
be skipped by the reader with no loss of continuity).

Induction Variable
C assign x(4*i)=a(i)

integer m,k,i
real x( 1 000),a( 1000)

C -- rewrite
m=O
k=4

k=4
m=
do i = l,1000

m=m+k
x(m)=a(i)

enddo

do i =l, 1000

m=i*k
x(m)=a(i)
enddo

In general, loops with data dependencies will have to be transformed into a form in
which the dependencies do not exist. In the above case, the transformed version
substitutes a multiplication for an addition.

Forward Dependency
C forward data dependency

integer i
real x(1001)

do i=1,1000
x(i)=x(i+l)
end do

-- x(i) is assigned its value after it is
-- read

C incorrect parallel code C parallel code
id = process-fork(nproc) id = process-fork(nproc)
do i=l +id, 1000,nproc do i=l+id,l000,nproc

x(i)=x(i+l) xold(i) = x(i+l)
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end do end do
call barrier() call barrier( )

do i = l+id,1000,nproc
x(i)=xold(i)

end do
In this example, a new array is used to avoid data dependency.

Backward Dependency
Backward dependency is a less tractable kind of data dependency, and requires more

advanced techniques to affect data flow. There is no simple way to parallelize the
following loop except reformulate the problem.

c example of backward dependency
integer i
real a,b,x( 1000)

do i=2,100
x(i)=a*x(i)+b*x(i-1)

end do

Break Out of Loop
Some programs manipulate the elements of an array one-by-one so long as some

condition holds, then terminate the manipulation when the condition is no longer true.

example for break out of loop
integer a( 1000),n,predicate,i

do i=l,n
if(predicate(a(i)) .eq. 1) then

call transform(a(i))
else

go to 2
endif

end do
continue

Splittable Loops
Certain kinds of data dependencies can be removed by creating two or more loops

from a single loop.

C example of splittable loop
int i,n,k
real a( lOOO),b( l000),c( l000) , f (2000) ,d
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do i=l,n
a(i) = b(i) + c(i)*d + f(i+k)
c(i) = a(i-1)

end do
If the statement c(i)=a(i- 1) is changed to c(i)=y(i),  there is no longer data dependency.

Sometimes this kind of dependency can be avoided by splitting into two loops without data
dependency.

C second example C rewrite
do i=l,n do i=l,n

a(i)=b(i) + c(i) *d + f(i+k) x(i) = c(i)
c(i)=a(i+l) c(i) = a(i+l)

end do end do
do i =l,n

a(i)= . . .

NUMERICAL EXPERIMENTS
The numerical experiments described in this section are intended primarily to illustrate

some basic aspects of DYNASMART. As a general simulation-assignment model,
DYNASMART can simulate a variety of scenarios according to specified variables. The
series of experiments described hereafter also provide insights into network performance
under real-time information for different behavioral assumptions, as well as into the
computational characteristics of the program.

Description of the Test Network
Figure 5 depicts the network used in the first set of numerical tests. It consists of a

freeway surrounded by a street network. The network consists of 50 nodes and 168 links.
All streets are two-directional (represented by two directional links in the graph) and have
two lanes in each direction except the entrance and exit ramps that connect the street
network to the freeway; these are directed arcs with one lane as shown in the figure. There
are 11 on-ramps and off-ramps that connect the freeway with arteries. All other
information is given in Table 2.

Demand Levels and Behavioral Experiments
Similar experiments were performed for different scenarios and results are reported in

Mahmassani et al. (1992) and Mahmassani and Jayakrishnan (1991). These experiments
are primarily included for illustration purposes. The simulation experiments were
conducted in two parts. The first part examines system performance under different
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demand levels. The second part investigates sensitivity of the system’s performance, under
the information strategy, with respect to two principal factors: (1) the fraction of users with
access to information, and (2) the mean relative indifference band, which captures the
propensity of users to switch in response to information. Two fundamental assumptions in
these experiments arc as follows:
1. All non-equipped vehicles are assumed to have current information before their trips

(through radio or TV) , and thus will be assigned to the current best path. After this
assignment, they are not allowed to change their routes during the trip.

2. The signal control parameters are not changed during the simulation. The green time
is allocated according to arrival flow rates and queue lengths based on preliminary tests.

Demand Levels
The base case loading pattern is set to follow a typical peak-period pattern with rapid

build-up and subsequent decrease of the loading vehicles. The vehicles are generated over
a 35-minute period and statistics are accumulated for vehicles generated after the first five
minutes (initialization period). The average number of generated vehicles is about 367
vehicles per minute, the average trip time is about 3.4 minutes and the average trip distance
is 1.32 miles. The number of vehicles and loading pattern are shown in Table 3. The total
number of vehicles is about 11,234 which is not expected to cause significant congestion in
the test network. The total demand is subsequently multiplied by a factor to examine the
variation of trip time with increasing demand. All the parameters are fixed at this stage.

Fraction of Equipped Vehicles
To examine the effect of this fundamental parameter in the large-scale deployment of

any in-vehicle information system, DYNASMART allows users to define different
fractions of vehicles in different classes. Output information will be generated by vehicle
class. In these experiments, three levels are considered 0.0, 0.50, and 1.00. Information
availability status is assigned randomly and independently to each vehicle as it is generated,
according to the specified fraction.

Mean Relative Indifference Band
The quantity nj in the boundedly rational behavioral rule governs users’ responses to

the supplied information and their propensity to switch. As noted earlier, we treat it as a
random variable; when generated, a user is assigned randomly and independently a value
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Table 2. Characteristics of the Test Network

Simulation Information
start up time : 5 minutes
period of interest : 5 - 30 minutes
Max simulation time : 150 minutes

Network :
Overall Data

number of nodes : 50
number of links : 168
destinations : 10 (2,5,13,18,25,30,35,36,37,  and 44)
demand zones : 10 (1 to 10, each zone covers 3-4 nodes)
ramp control : 11 on ramps

Link
Jam density = 160 vehicles/mile
Maximum density = 260 vehicles/mile
arterial street
length : l/4 mils
number of lanes : 2
velocity : 30 miles/hr

freeway
length : l/4 miles
number of lanes : 2
velocity : 55 mph

on-ramp and off-ramp
length : l/4 mils
number of lanes : 1
velocity : 30 miles/hr

HOV links
length : l/4 miles
number of lanes : 1
velocity : 55 mph

Signal Data
No-control : 16
Retimed control : 26

2-phases operation
green time : 25 seconds
amber time : 5 seconds

Actuated Signal Control : 8
2 phases operation
min green time : 10 seconds
max green time : 25 seconds
amber time : 5 seconds
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Table 3. The Loading Pattern for the Base Case

 5 I 1205 | 1205 |
10 2077 3282
15 2805 6087
20 2142 8229
25 2107 10336
30 855 11191
35 43 11234

2500,

5 10 15 20 25 30

Time Interval (in minutes)
Figure 6. Vehicle Generation Pattern
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for nj. For convenience, nj is assumed to follow a triangular distribution, with mean n  and
range of n/2. The minimum improvement t j  in the switching rule expression is taken to be
identical across users. In these experiments, the n  is set to 0.2 and t  is equal to one
minute, unless noted otherwise.

Results
Effect of Demand Levels
The purpose of these experiments is to observe the variation in system performance when
the demand is increased. None of the vehicles are assumed to be equipped with real-time
information systems (0% market penetration). The variation of average trip time (ATT),
average stopped time (AST), and average trip distance(ATD) are reported in Table 4. The
variation of the systemwide average trip time and average stopped time is shown in Figure
7. As expected, the average trip time increases when the demand is increased. The average
trip time for demand factor 2.2 is 15.0 minutes which is four times more than the base case
(3.51 minutes). In Figure 7, we also observe that the ATT and AST are highly positively
correlated, and that the AST also increases rapidly with increasing congestion. The
variation of ATD is shown in Figure 8. The increase in trip distance is relatively small in
magnitude. The ATD for the 2.2 demand level case is 1.44 miles, that is 9 % more than the
base case (1.32 miles).

Effect of In-Vehicle Information and Behavioral Scenarios
The experiments illustrate the behavioral modelling capabilities of DYNASMART. The

results of myopic switching and 0.2 indifference band are reported in Tables 5 and 6,
respectively for a 50% market penetration level (equipped vehicles). Similar results were
reported in Mahmassani et al (1992) and Mahmassani and Jayakrishnan (1991). In the
myopic case (relative indifference band = 0.0 and minimum bound = O.O), equipped
vehicles always switch to an alternate path if it offers an improvement in estimated travel
time, no matter how small its magnitude. In Table 5, the difference between equipped and
non-equipped vehicles becomes larger for higher demand levels. For example, the relative
benefit to equipped vehicles is -0.6% for the base case and 9.4% for demand factor 2.0
case, as shown in Figure 9.
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Table 4. System Performance Statistics for Different Demand Factors

* Tagged vehicles are those generated between minute 5 and minute 35 over the simulation
and for which statistics are accumulated.

20 

18- ATT
16- AST

14-

12-

10-

10000 15000 20000 25000 30000
Number of Vehicles

Figure 7. Variation of Average Trip Time (ATT) and Average Stopped Time
(AST) for Different Demand Loads

If all equipped vehicles with the same destination switch to the same route, the route is

not likely to remain a superior one to use. The variation of ATT and AST compared with
the original case (0% market penetration, or no information) is shown in Figures 10 and 11
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Table 5. System Performance Statistics for the Myopic Case

equipped 1.323  1.329  1.346  1.374  1.383  1.414  1.453

Table 6. System Performance Statistics for the 0.2-band Case

Demand

non-equipped  0.78
equipped  0.78

1.2 1.4 1.6

4.05 4.91 6.8

4.09 I 5 I 7.13 8.96  12.41  14.96

1.37 2.1 3.85
1.28 1.95 3.26

1.333 1.346 1.372

1.334 1.353 1.373
1.332 1.339 1.372

5.22  8.14  9.83
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Table 7. Comparison of Route Switching under Myopic Rule Case and 0.2-
Band Switching Rule

Demand Indiff Number of Number of
Switches

Factor Band 0 1 2 3 4 5--8 Vehicles % of switches
1 0 130 737 1173 1241 866 721 4868 97.33

0.2 4295 537 35 0 1 4868 11.77
2 0 205 967 1735 1532 981 612 6032 96.60

0.2 4375 1351 259 44 3 6032 27.47
3 0 236 1239 2039 1723 1112 562 6911 96.59

0.2 3629 2277 791 178 27 9 69il 47.49
4 0 408 1846 2401 1805 972 438 7870 94.82

0.2 2968 3057 1386 375 72 12 7870 62.29
5 0 546 2376 2819 1921 909 315 8886 93.86

0.2 2864 3561 1779 507 154 21 8886 67.77
6 0 444 2218 3021 2278 1226 657 9844 95.49

0.2 2668 4108 2191 721 138 18 9844 72.90
7 0 1244 3887 3382 1616 565 231 10925 88.61

0.2 3533 4428 2310 551 91 12 10925 67.66
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Table 8. System Performance for Multiple User Classes
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Veh(# tag inf 0 D ST TT):23154 2 0 1 25 25.00 20.52

node-sequence 2 a 14 20 26 25
cumulative TT 3.30 13.90 15.90 17.40 19.10 20.52
Travel Time 3.30 10.60 2.00 1.50 1.70 1.42
Stop Time 3.30 8.72 1.24 1.08 1.28 1.00

Veh(# tag inf 0 D ST AT TT):23169 2 0 18 25 25.00 32.92
24 30 29 34 33 32 31 25
5.10 6.52 24.70 26.40 27.72 29.50 31.50 32.92
5.10 1.42 18.18 1.70 1.32 1.78 2.00 1.42
5.10 1.00 17.78 1.17 1.00 1.38 1.58 1.00

Veh(## tag inf 0 D ST AT TT): 23173 2 0 26 2 25.00 24.12
31 25 19 13 7 1 2
9.00 12.30 la.50 20.00 21.32 22.72 24.12
9.00 3.30 6.20 1.50 1.32 1.40 1.40

8.90 2.47 4.76 1.08 1.00 1.00 1.00

COMPUTATIONAL RESULTS
This section discusses the computational performance of DYNASMART, which is an

important element in view of its eventual use in a real-time or quasi real-time environment.

Performance Measurement
Several techniques have been applied and tested to analyze and improve the program

code. The performance utilities on CRAY are adapted to generate more detailed
information to identify the most time consuming components of the program. Two major
utilities are used to detect the most time consuming parts : FLOWTRACE and PROF.
FLOWTRACE measures the execution time of subroutines, and PROF is able to generate
information about the time spent in each loop and in each statement.

Computational Results for the Small Network
Execution Analysis of Subroutines

The code execution analysis for the small network is discussed in this section. Table 9
provides representative results on the computational intensity of the program routines as
found in a 74.5 minute simulation with 20,064 vehicles. There are 10 destination nodes in
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this network, and the multiple-user classes K-shortest path subroutine is used. The time
interval for calculating K-shortest paths is two minutes (i.e. 20 simulation time steps), and
the path file is updated for every simulation time step (6 seconds). The execution time
analysis at the subroutine level generated from FLOWTRACE includes the total time (in
CPU seconds), number of calls, average time for each call, percentage of total, the
accumulative percentage. In this case, with autotasking and some microtasking directives
invoked the total execution time is about 122 seconds. All the subroutines are explained as
follows:

COMBINEDLABEL : combine and update multiple path labels for each user class
PARTCO : the main traffic simulation which performs link movement and node transfer
GETLINK : behavioral component, which provide the next link on the path
KSHORTESTPATH : K-shortest path bound calculation
PENCAL : movement penalty calculation
MAIN : the main control program which include input and output statement
BUILDPRIORITIES : build priority for COMBINEDLABEL
ADJUSTAT  : adjust the saturation flow rate according to the left-turn ratio
KSHORTESTPATHC : K-shortest path calculation
LABELSUPDATE : update the path label after the KSHORTESTPATHC
INTEGRATEIT : integrate the path to an unified structure
LEFTVAL : evaluate the left-turn capacity according to the current information
PRETIME : calculate the signal cycle for pretimed control intersections
INITIALIZEAR : initialize the array bound before KSHORTESPTAH calculation
SIGFUN : the fork component for signal control calculation
BEGINRT : the initial path assignment
ACTUATED : actuated signal control calculation
OUTPUT : output system performance for multiple user classes
NOCONTROL : process intersection control without signs and signals
INITIALIZAARRAYS : the initialization of KSP arrays
LEFTCON : the interface for calling KSP calculation.
INCIREAD : read incident data
RAMPFUN : process ramp functions
INITIALIZEPRMTS : the initial set up for KSP Calculation.
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Table 10. Comparison of Execution of DYNASMART under Different
Optimization Options

INITIALIZEPRMTRS 1.52E-06 1.57E-06 1.03 1.56E-06 1.03
TOTAL 121.59 565.70 4.65 186.50 1.53,
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In Table 9, we see that about 57 percent of the execution time is spent on multiple user
classes path calculations for the 10 destinations network. PARTCO, the main simulator, is
about 20 percent, and PENCAL, the interface between KSHORTEST and PARTCO take
about 8 percent of execution time. For path processing, the update subroutine is three
times faster than recalculating the paths. For the behavioral rules incorporated in
GETLINK,  the number of calls is 1,112,605 and takes 9% of total execution time. When
the vehicles reach nodes, GETLINK will be called to determine the next link on the path.
MAIN is the major input and output module, and takes about 2.79 seconds, or about 2.3
percent of the total. Note here that the output information obtained from these tests
includes only the system performance statistics, and all the time-dependent information are
not reported. All other subroutines jointly account for less than 10% of execution time.

Different speedup comparisons are reported in Table 10, in which two cases are
compared with the previous time calculation:
CASE A : all the optimization features of the compiler are turned off (such as autotasking,
vectorization)
CASE B : without autotasking and aggressive optimization setting in compiler

The total execution time for CASE A is 565.7 CPU seconds which is 4.6 times slower
than the optimal one, and CASE B is 1.5 times slower than the optimized version. The
speed up ratio of the optimized version is also reported in column 4 and column 6. In
column 6, we can see the speed-up of optimized program is quite significant. All the
subroutines obtain l-5 times speed up, while PARTCO experiences about 10 times speed
up. In CASE B, AUTOTASKING and AGGRESS setting have been turned off. Through
the autotasking capability of CRAY, we can obtain about 1.5 speed-up for DYNASMART.

The fact that a majority of the computation time is incurred in the path processing
component is encouraging, because the present experiments included very extensive path
computations that most certainly exceed practical requirements. For instance, instead of
updating all K paths every simulation interval, the update may take place only every other
interval, thereby halving the computation associated with this task. More important, the
time frame for recomputing the K paths need not be as short as it is here: going from 2 to 4
minutes would mean a 50% reduction in execution time associated with that portion.

Comparison for Different Demand Factors
Figure 14 illustrates the variation of execution time for different demand levels. When

the congestion level is increased, the number of vehicles and simulation periods are also
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Some other specifications :
Number of Nodes : 50
Number of Links : 168
Destination Zones : 38
Destination Nodes : 38
Simulation Interval : 0.1 minutes
Total Number of vehicles : 15007
Simulation Time : 44.7 minutes
Average Travel Time : 5.05 minutes

The execution time is shown in Table 11. The single K-shortest path subroutine takes
50 percent of execution time, and PARTCO takes about 30 percent of execution time. It is
also expected that the execution time will increase with the increase in the number of
vehicles and associated congestion levels.

DYNASMART is written in CRAY FORTRAN (CFT), which is readily portable to
other environments (the code has been successfully executed on workstations). Being
written in CF177, DYNASMART can be executed on various other hosts with little
modification. The execution time for running on CRAY YMP, CONVEX, and RISC 6000
are reported in Table 12. Note that the execution time is obtained with only the overall
system performance measures output. CONVEX and RISC 6000 are two front end
machines of the CRAY in the University of Texas System Center for High Performance
Computing (CHPC). Surprisingly, the performance of RISC 6000 is two times faster than
CONVEX machine. In these runs, the execution time on CRAY is 2-7 times faster than on
RISC-6000, with CRAY providing much better relative performance as the number of
vehicles increases.

Execution Analysis for the Austin Network
Although the previous test network is relatively small, the total execution time

described in the previous section provides some idea about the time spent on each
subroutine. Some of the experiments for the Austin core network (676 nodes, 1882 links,
32 destinations and 36 demand zones) without movement considerations, are reported in
Table 13. These tests are made without explicit left-turning movement penalties. There are
479 stop/yield signs and 132 signalized intersections. For a total of 17,712 vehicles,
DYNASMART executed in 621.1 seconds for an 80-minute simulation period.
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Table 11. Execution Analysis for Single User Class Version of
DYNASMART

Table 12. Performance Analysis on Different Hosts for Single User Class
Version of DY NAS MART

Number of Simulation Average CRAY CONVEX RISC6000
vehicles Time (in Travel Time (in seconds) (in seconds) (in seconds)

minutes) (in minutes)
15007 44.7 5.05 49 242.3 119.6
22507 67.9 9.12 65.3 438.9 244.8
30029 107.1 22.9 95.3 1029.9 703.5
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Table 13. Execution Analysis for the Austin Network without Movement
Considerations

Number of Vehicles

12431
15046

Simulation Time Average Travel Time EXEC Time
(in minutes) (in minutes) (in CPU seconds)

45.2 4.77 462.4
62.3 6.38 563.3

17712 I 81.4 7.13 I 621.1 I

Table 14 provides the representative results on the computational performance of the
single user class DYNASMART with explicit left-turn representation in an 87-minute
simulation of the Austin network. The program is compiled with autotasking,
microtasking, aggressive, and inline insertion. The total execution time is 724 CPU
seconds on CRAY YMP. The subroutines are briefly described as follows:
LEFTCON : left-turn K-SP calculation
LABELSUPDATE : path update
PARTCOMU : the core of traffic simulation
BUILDPRIORITIES : build priorities for LABELSUPDATE
PENCALSN : penalty calculation
MAINSUC : main program
INTEGRATEIT : integrate the path into a single structure
GETLINK : path selection component
ADJUSTSAT : saturation flow rate adjustment
INITIALIZEARR : initialize arrays for KSP calculation
LEFTVAL : check the left-turn capacity from the built-in tables
BEGINRTS : assign the initial paths to vehicles
PENCALMU : initial phase of penalty calculation

In this analysis, ten best paths are calculated every two minutes (20 simulation time
steps), and these paths are updated every 0.1 minute (i.e. every simulation time step). We
can see that 70% of execution is spent on LEFTCON, LABELSUPDATE and
BUILDPRIORITIES, as compared to about 11% in vehicle simulation. Again, this
execution time can be readily reduced by less frequent path calculations with limited loss of
accuracy. In particular, execution runs in the order of 300 seconds were obtained for the
same simulation case with path recalculation every 40 time steps and path updates every
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four time steps with very comparable overall system performance. Most important from
the standpoint of real-time system optimal (or user equilibrium or multi user class) dynamic
assignment algorithms, where DYNASMART is used as a simulator, is that execution time
for comparable runs to that above is about 180 CPU seconds (Austin network) when the
vehicle paths are pre-specified, as they are in the dynamic assignment algorithms presented
in the next two chapters.

Table 14. Execution Analysis for the Austin Network

INTEGRATEIT 2.13E+01 1.25E+03 1.70E-02 2.94
GETLINK 5.05E+00 4.80E+05 l.05E-05 0.7
ADJUSTSAT 4.5 lE+00 1.46E+06 3.09E-06 0.62
SIGFUN 4.06E+00 7.71E+02 5.27E-03 0.56
INlTIALIZEARR  2.63E+00  1.25E+03  2.1lE-03  0.36 I
LEFTVAL 9.03E-0 1 l.l9E+05 7.60E-06 0.12
BEGINRTS 1.44E-0  1 7.95E+03 1.81E-05 0.02
PENCALMU 8.38E-02 1 . 0 0 E + 0 0  8.38E-02 0.01

I Totals I 7.24E+02  2 0 7 5 5 5 0   I I

APPLICATIONS AND EXTENSIONS
DYNASMART provides a flexible framework to analyze traffic network performance

under real-time information, traffic control actions and user behavior strategies. In the
form described in this and the previous chapter, it simulates network conditions over a
given (peak) period on a given day. DYNASMART is being extended along three
important dimensions: (1) day to day system dynamics and evolution, (2) real-time
adaptive traffic control; and (3) responsiveness to road pricing options.
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The first dimension is an essential one in the analysis of the effect of information, as it
considers the changes in departure time from day to day. Consideration of day to day
decisions of tripmakers (departure time and route) allows a more complete evaluation of the
evolution of a particular system under a particular information supply or traffic management
strategy. This capability requires the specification of appropriate decision rules in the user
behavior component.

The second capability is to a large extent already available, though specific control
modules need to be incorporated. More important, explicit consideration of control actions
in an algorithmic procedure jointly with routing choice is of primary importance to ATMS
applications.

With regard to road pricing, the structure of DYNASMART already provides the
flexibility to incorporate user response rules to congestion pricing schemes. Of course,
developing such behavioral rules requires an observational basis, presently being pursued
under a separate study.

As noted in the first chapter, one of the primary uses of DYNASMART is as a
simulator in the context of algorithmic procedures to solve for a set of paths followed by
drivers in order to achieve either a system optimum or user equilibrium in a given network
with time dependent demand. These algorithms and their implementation are described in
the next two chapters.
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CHAPTER 4

THE SYSTEM OPTIMAL DYNAMIC TRAFFIC ASSIGNMENT PROBLEM

Chapter 4 introduces and details the system optimal dynamic traffic assignment
problem in the context of ATIS/ATMS applications. This chapter first presents a brief
introduction to the problem being addressed and then discusses the dynamic assignment
capabilities envisaged for the ATIS/ATMS context. The existing literature in the area is
then briefly reviewed and the issues that influence the formulation of the problem are
discussed. The body of the chapter presents formulations for the problem based on
different information availability scenarios for the controller, and describes a simulation-
based solution algorithm developed for the single user class system optimal dynamic
traffic assignment problem: the modifications necessary to obtain the user equilibrium
solution are also stated. The remainder of the chapter reports and analyzes results from
experiments designed to evaluate alternative information supply strategies in the context
of ATIS operations, followed by concluding comments.

INTRODUCTION AND PROBLEM DEFINITION
Approaches incorporating advances in communication technologies, information

processing systems, electronics and automation, broadly labeled as Intelligent Vehicle
Highway Systems (IVHS), continue to generate considerable interest for their potential to
alleviate urban and suburban traffic system congestion. Advanced Traveler Information
Systems (ATIS) provide travelers with real-time information on existing traffic
conditions and/or route selection recommendations from their current location to their
destinations. Successful implementation of ATIS, especially at high market penetration
levels, involves the dynamic assignment of vehicles to “optimal” paths to reduce overall
system user costs.

The system optimal dynamic traffic assignment problem is directly relevant to the
normative assignment problem encountered in connection with ATIS/ATMS operations.
It addresses the problem where a central controller with known or predicted time-
dependent origin-destination (O-D) trip desires over the horizon of interest solves for
paths to provide users in order to attain some system-wide objectives. A system optimal
assignment does not generally represent an equilibrium flow pattern because some users
may be able to obtain (possibly very slight) individual travel cost savings by unilaterally
changing routes. Its significance to the ATIS context lies in providing a benchmark
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against which other assignments or information supply strategies can be gauged, thereby
yielding an upper bound on the benefits attainable with real-time traffic information. In
addition, it provides a solution basis from which to obtain actual route assignments
(recommendations) to drivers, after the controller has applied certain reasonableness
constraints to individual routings (e.g. with regard to circuity or excessive trip time).

A number of factors influence system performance in the context of dynamic traffic
assignment for real-world ATIS/ATMS systems. The fraction of users with capability for
one-way or two-way communication (market penetration) with a central controller, the
various information supply strategies or assignment rules, and the user response behavior
to supplied information are critical determinants of the particular dynamic assignment
strategy in any realistic scenario for implementing ATIS/ATMS. An ideal scenario from
a controller’s perspective in the ATIS context is one where all users of the system have
full access to information, are provided route guidance instructions based on a system
optimal strategy, and comply fully with the supplied information, thereby extracting the
best possible performance from the system. This chapter defines the system optimal ,
dynamic traffic assignment problem and discusses the formulations and solution
algorithm developed for the single user class case. The associated user equilibrium
assignment problem is also studied so as to derive insights into the performance of
prescriptive versus descriptive strategies in the context of dynamic traffic assignment
under in-vehicle information systems. The next chapter addresses, among others, the
multiple user class dynamic traffic assignment problem (which includes both users that
follow UE paths and users that follow SO paths) by extending the formulations and
solution methodology for the single user class problem.

DYNAMIC TRAFFIC ASSIGNMENT CAPABILITIES FOR ATIS/ATMS

As discussed in Chapter 1, two capabilities are envisaged for dynamic traffic
assignment in the context of ATIS/ATMS operations. A normative perspective
determines a solution that seeks to achieve some overall objectives for the system. A
descriptive perspective seeks to describe the traffic conditions that will occur in a
network under a particular loading pattern. The former usually requires a capability for
the latter. User equilibrium and system optimal assignments are associated with a set of
conditions that must be satisfied by the routes followed by users in a network. An
extensive and comprehensive discussion of formulations for the SO and UE static
assignment problems is provided in Sheffi (1985). In a system optimal strategy, the aim
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is to solve for routes that “optimize” the overall system performance, subject to
reasonableness and fairness conditions for individual users. Hence, it corresponds to a
normative perspective. A descriptive simulation-assignment capability is necessary to
perform a normative assignment and test alternative information and routing strategies.

The User Equilibrium Case
The time-dependent UE formulations are not of immediate relevance to the real-time

assignment needs in the ATIS/ATMS context, where the controller’s objective is to
optimize some system-wide performance measures. The pertinence of UE to the problem
lies in its historical significance to the classical static assignment problem, where
equilibrium analyses are performed for long-term planning applications. Under UE,
which is claimed to represent a reasonable construct for user behavior, every user is
assumed to try to minimize his/her own travel cost when traveling from origin to
destination. A Wardrop UE holds when no user can improve his/her individual cost by
unilateral route switching, and thus represents an equilibrium condition. There is no
empirical evidence that UE conditions actually hold in real networks, though the UE
solution is considered a reasonable and useful construct for the evaluation of long-term
capacity improvements.

Under real-time descriptive ATIS information on network conditions, a time-
dependent UE pattern could be viewed as the result of the long-term evolution of the
system, as users somehow learn and adjust under the supplied information. However, it
is not at all clear that such convergence would be attained under inherently dynamic
conditions (exacerbated by supplying information to users). Thus it is not known what
the UE solution may represent from the standpoint of ATIS operation and evaluation,
Actual user behavior and system performance under real-time descriptive information
may be better or worse than the corresponding time-dependent UE solution in terms of
the overall system cost. Nevertheless, a time-dependent UE pattern may be considered as
a useful proxy for a favorable scenario of long-term network performance under real-time
descriptive information.

The System Optimal Case
A SO solution, by definition, is the best one could achieve in terms of an overall

measure of performance. In the context of traffic assignment, it can be attained by
routing vehicles on the least marginal cost paths to their destinations, paths which impose

61



the least penalty on the system due to vehicles traveling on them. A system optimal
assignment does not generally represent an equilibrium flow pattern, or a model of actual
user behavior, because some users may be able to obtain individual advantages simply by
changing routes, though imposing a greater marginal cost to other users in the system in
the process. Its significance to the ATIS context lies in the value of the SO objective
function serving as a yardstick by which other possible problem formulations as well as
simple-to-implement heuristic control schemes can be evaluated, thereby yielding an
upper bound on the benefits attainable with real-time traffic information.

In the context of real-time assignment, a controller seeking to optimize overall
system performance is constrained among others by individual considerations of
reasonableness, fairness, equity, reliability and credibility. A SO solution may not
necessarily be equitable, in that some users may be guided on to longer routes in order to
reduce the travel time for other tripmakers. Consequently, the SO solution provides only
a starting point for actually providing route guidance information. A slightly modified
strategy envisions an additional level of processing by which users are assigned paths
within a certain threshold of the best path. Previous observational work conducted in the
Austin network (Mahmassani et al, 1990) has indicated the possibility of an abundance of
“good” paths between an O-D pair. This ensures almost everyone good paths, though not
necessarily the shortest path. In addition, to the extent that one’s route assignment may be
randomized over drivers, all drivers will ultimately (i.e. in the long run) be better off, on
average.

BACKGROUND REVIEW
Dynamic network assignment is under active development, for both the user

equilibrium and SO problems. Existing formulations are not entirely satisfactory in terms
of the underlying assumptions and/or cannot be solved for realistic networks.

The bulk of the contributions to the system optimal dynamic assignment problem
have addressed the situation where known time-dependent flows are assigned from
multiple origins to a single destination through the links of a network so as to minimize
total system cost. The first mathematical programming approach to this problem is due to
Merchant and Nemhauser (1978). Their model was formulated as a discrete-time, non-
linear, non-convex mathematical program and the corresponding algorithm solved a piece
wise linear version of it. Congestion was treated explicitly using conventional link
performance functions.
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Carey (1986) reformulated the Merchant-Nemhauser problem as a well-behaved
convex nonlinear program, which offered mathematical and algorithmic advantages over
the original formulation. Extensions to multiple destinations or multiple commodities
remain problematic because of non-convexity issues. Multiple destinations require the
models to explicitly seek to satisfy a “first-in, first-out“ requirement that is essential from
a traffic viewpoint. This requirement introduces additional constraints that complicate
the formulation, and destroy many of its nice properties, as they generally yield a non-
convex constraint set (Carey, 1992).

A more recent line of work has considered constrained optimal control theory. The
O-D trip rates are assumed to be known continuous functions of time, and the link flows
are sought as continuous functions of time. Friesz et al. (1989) discuss optimal control
formulations for both system optimal and user equilibrium problems. They propose a
dynamic generalization of Beckmann’s equivalent optimization problem for static user
optimized traffic assignment in the form of an optimal control problem. Ran and
Shimazalci (1989) used the optimal control approach to develop a general model of
dynamic system optimal traffic assignment for an urban transportation network with
many origins and many destinations. Ran and Boyce (1993) formulated a continuous
dynamic user optimal traffic assignment model in which exit flows are treated as a set of
control variables rather than as functions, so as to overcome difficulties posed by the non-
linearity of the exit flow function for multiple origin-destination networks. Wie (1990)
extended the model by Friesz et al. (1989) to include elastic time-varying travel demand,
which leads to the implicit consideration of departure time choices. Wie also enumerates
several limitations of this approach.

Boyce et al. (1991) used the optimal control theory approach to obtain a convex
model for dynamic user equilibrium assignment by defining inflows and exit flows on
links to be control variables. They discussed a methodology to solve the discretized
version of the problem using the Frank-Wolfe algorithm and an expanded time-space
network representation. However, the use of static link performance functions is a
limitation of this model as such functions do not adequately model the dynamics of
congested traffic behavior. Furthermore, the authors have not reported any
implementation of this approach even on a test network. Both Ran, Boyce and co-
workers on one hand, and Friesz, Wie and co-workers on the other, have continued to
develop the mathematical theory underlying different UE formulations and
interpretations. While these continue to advance the scientific body of work, they have

63



not resulted in practical solution algorithms for general networks and have several
essential traffic modeling issues that remain to be solved satisfactorily.

Another direction of work with feedback regulation was introduced by Papageorgiou
et al. (1990). A multivariable feedback regulator with integral parts and a simple bang-
bang controller was developed and tested for a particular network traffic model.
However, the formulation does not establish the underlying mathematical basis with
regard to the solution properties and lacks a first-in, first-out requirement.

Ghali and Smith (1991) proposed a formulation for the system optimal dynamic
traffic assignment problem for multiple origin-destination demands in which congestion
arises exclusively at specified bottlenecks modeled as deterministic queues. A solution
procedure is proposed by analogy with the static SO problem, using marginal link costs.
Although the approach does not ensure system optimality, and has limitations due to
certain assumptions on queuing, it addresses several of the troublesome traffic modeling
issues which seriously limit the realism and validity of previous formulations. Smith
(1991) proposed a dynamic user equilibrium model for peak period traffic flows on
congested capacity-constrained urban road networks. Motivated by the first-in first-out
property for traffic, the model specifies a “no overtaking” condition and determines the
relative priorities of vehicles at each node seeking to proceed along the various paths
containing that node based on the past history of the vehicle (represented by a binary
numbering scheme). Smith also proposed an algorithm for solving the model, although
there is no proof that the algorithm converges to an equilibrium.

In summary, the state of art is fragmented along several lines of work, none of which
is entirely satisfactory in terms of the realism of the underlying assumptions. Key
weaknesses remain in terms of representing dynamic traffic phenomena which are of the
essence in congested networks. A comprehensive review and discussion of dynamic
assignment and traffic simulation models for ATIS/ATMS are given in Mahmassani et al.
(1992). In the next section, the principal elements of SO traffic assignment problem
formulations for ATIS/ATMS applications are identified, along with the key issues faced
in their solution.

SYSTEM OPTIMAL FORMULATIONS - ISSUES FOR ATIS CONTEXT
This section identifies and discusses principal issues involved in formulating the

system optimal dynamic traffic assignment problem for ATIS/ATMS applications.

64



Information Available to Controller
Different scenarios are possible based on the extent and type of information on O-D

desires and network traffic conditions assumed to be available to the controller. If
complete information is available on the origin, destination and timing of all trips for the
entire duration of interest, path assignment can be made for all time intervals in the
beginning. Partial information on O-D desires in the future can be modeled using a
rolling horizon framework, possibly in connection with a stochastic formulation in which
O-D trips are modeled as random variables. Solution of the complete information
formulation is necessary to obtain a benchmark and a lower bound on system costs for
other, partial information formulations.

Information Available to Travelers
Users with equipped vehicles are given information on the condition of the network

and/or instructions on the path to be taken to their desired destinations. In the system
optimal problem, the controller provides users with routes to their destinations. However,
compliance influences the performance of the system. Under descriptive (as opposed to
normative) information supply strategies (see Mahmassani and Jayakrishnan, 1991, for a
discussion of such strategies), system performance depends on user decisions in response
to the specific information supplied. A related (normative) problem faced by the
controller in the ATIS context is the determination of the optimal information supply
strategy, namely what kind of predicted trip times should be supplied to which users in
order for the resulting path choices to attain certain system-wide objectives.

Evaluation of the Objective Function
The system optimal dynamic assignment problem aims at optimizing some system-

wide criterion like the total system travel time. The time-dependent nature of the
assignment considerably complicates the computation of the objective function. For
instance, the paths followed by future O-D desires are likely to share common links with
paths assigned to current trips (generally upstream), and thus influence the travel times
experienced by current assignments. The path travel times experienced by vehicles are
the net result of the complex spatial and temporal interactions taking place in the system
over a period of time, virtually precluding the ability to evaluate the objective function
analytically. Furthermore, the analytic evaluation of the objective function would entail
correct analytic representation of the various dynamic traffic flow phenomena (queue
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formation and discharge, congestion build-up and dissipation), a task which is far from
the capability of the state of the art in traffic flow modeling. For these reasons,
simulation suggests itself as a plausible candidate for evaluating the objective function.

Traffic Flow Modeling
This point follows directly from the difficulty just mentioned of correctly

representing the dynamics of traffic flow using the kind of analytic functions typically
used in static equilibrium assignment models. Furthermore, the representation of flow as
a continuum is not appropriate in the time-dependent case. Users entering the system at
different times will experience different network conditions and will be assigned different
paths. Continuous flow does not allow for distinction of vehicles based on whether they
are equipped or not.

Path-Based and Link-Based Formulations
In virtually all existing traffic assignment models, static or dynamic, the link flows

are the variables being solved for. However, for the ATIS/ATMS context, path-based
assignments are called for because of the need to provide paths to the tripmakers. The
problem with obtaining path flows from link flows using link-path incidence relationships
is that uniqueness is not guaranteed. Furthermore, the solution of path-based
formulations is likely to require partial enumeration of paths for each O-D pair, which is
computationally burdensome.

Flows on arcs and paths are mathematically related through definitional identities
known as the link-path incidence relationships. While relatively straightforward in the
static case, link-path incidence relationships are far from trivial in the time-dependent
case. In the dynamic problem, unlike flows at steady-state, vehicles assigned to a path at
a given time are not simultaneously present on all links forming that particular path.
Therefore, link-path incidence relationships must recognize the time at which vehicles are
actually present on a link.

Holding of Traffic
In a network, it may often be advantageous, from a systemwide total delay

standpoint, to favor certain traffic streams or movements over others (e.g. holding back
traffic at the minor approach of an intersection in favor of the major approach). Unless
otherwise specified, the solution of a SO assignment formulation may entail holding of
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traffic on one path in favor of traffic on other paths for some significant amount of time at
points where the paths overlap or intersect. In other words, vehicles may be artificially
delayed on a link for a time that exceeds what may be considered “fair” or “reasonable”.
Such a solution is probably not acceptable socially nor realistic operationally. When
traffic simulation is used to model traffic movements to evaluate network performance
for a given assignment, unintended holding is implicitly precluded, and no additional
explicit constraints are needed to take care of this problem.

First-In, First-Out Requirement
The physical behavior of traffic on a roadway link exhibits the so-called “first-in,

first-out“ (FIFO) property, creating a particularly vexing difficulty in the solution of
mathematical programming formulations of the network assignment problems. The FIFO
requirement states that traffic that enters a road at a particular time exits from the facility,
on average, before traffic which enters in later periods. While individual vehicles may
travel at different speeds and do pass each other, FIFO should not be violated when
considering travel time, averaged over a reasonable number of vehicles entering the link
in a given time interval. The problem does not arise in static assignment problems (single
or multiple destinations) nor in dynamic assignment with a single destination. However,
in dynamic assignment problems with multiple destinations, vehicles on different paths
(from different O-D pairs) who share one or more common links may be moved across
this arc in a manner that violates FIFO, for instance, if the downstream arc along one path
is blocked but not along the other path(s). This problem arises for both SO and UE
assignment formulations. For SO problems, total travel costs could be lowered if some
commodities (e.g. traffic between given O-D pair) could be temporarily held back on an
arc, while allowing some other traffic types to proceed to downstream arcs. This form of
holding back would violate FIFO, and is not generally physically possible, especially
under congested conditions, as vehicles cannot make such “jumps” over traffic ahead of
them.

FIFO is a serious liability from a mathematical programming standpoint. Carey
(1992) proposed possible additional mathematical constraints to impose the FIFO rule.
However, these constraints make the feasible set non-convex, destroying many of the
computational and mathematical (analytic) advantages of the formulation. Carey
suggests solving the problem without introducing an explicit FIFO restriction, then
analyzing it for the seriousness of FIFO violations. However, no explicit procedure is
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proposed for this purpose. Smith (1991) proposes a DUE assignment model which
approximately bypasses the FIFO issue.

The above issues further highlight the relative advantages of a simulation-assignment
strategy. Simulation moves vehicles based on their current location and speed, and FIFO
is implicitly satisfied.

Temporal Issues
The treatment of time in various aspects of the formulation and solution of dynamic

assignment problems is an essential and subtle element of these problems. When time is
discretized, the size of the time interval for assignment decisions, and its relation to the
time step that may be used in the simulation of traffic movement, need to be determined.

The size of the assignment interval affects the size of the “packet” of O-D desires to
be assigned jointly. If the time interval is relatively large, there will be several vehicles
going from a particular origin to a particular destination in that time interval. However,
their travel “experience” in the network may not be identical as vehicles at the beginning
of the interval may experience different time-varying traffic conditions. Assigning all of
them to the same path would be incorrect in terms of achieving the objectives. A smaller
assignment time interval implies more intensive computation, giving rise to the usual
trade-offs between computational intensity and accuracy.

Central and Distributed Control
The system optimal dynamic traffic assignment problem is a large scale optimization

problem with large memory requirements and intensive computational needs in real-time,
especially from the perspective of in-vehicle electronic navigation systems. One way of
overcoming the huge computational requirements is to decentralize the control process.
In the distributed control scenario, local controllers in different zones of a network assign
vehicles to the network based on the local traffic conditions and information on the
network traffic conditions provided by the central controller. Hence, unless there is good
coordination in the transfer of information between zones, this will not lead to solutions
as efficient as when a central controller makes decisions based on the entire network
traffic conditions. Hence, decentralized control requires a well integrated information
communication system for efficient performance. However, as stated above,
decentralized control makes the real-time handling of information easier as local
controllers deal with a lesser amount of data. Also, the idea of local control is especially
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appealing in scenarios with incidents. Since in general an incident is not global in nature,
local controllers can efficiently route vehicles entering the zone with incident.

Another strategy is an integrated central-local controller scheme, where local
controllers make local assignment decisions and transfer control to the central controller
when decentralized control becomes inefficient as is possible under highly congested
conditions. The central controller can then route vehicles for all O-D pairs and transfer
control back to the local controllers when global effects are less critical. The issue of
centralized versus decentralized control needs to be explored further to determine the
relative advantages of local control in real-time assignment of vehicles. This issue is
intrinsically related to the ATIS/ATMS control system architecture.

Link Interactions
Mathematical programming formulations generally assume that travel time on a

given link depends only on flow through that link and not on the flow through any other
link. This assumption fails in reality when heavy traffic occurs on two-way streets,
unsignalized intersections, and left-turning movements in signalized intersections. In
such cases, link interactions cannot be ignored.

Link interactions can be either symmetric or asymmetric. Symmetric interactions
ascribe identical marginal effects of links flows on each of the two links to the travel time
of the other. In the static case, when link interactions are asymmetric, there is no known
equivalent minimization program that can be used to obtain the equilibrium flow pattern.
Almost all analytical models to date on dynamic assignment problems avoid considering
link interactions in their problem formulation as they lead to a much higher degree of
complexity. Even in the static case, only in the past decade have approaches like
variational inequality formulations for the asymmetric link interactions been discussed-
Fisk and Boyce (1983). Computational aspects of this problem have been investigated by
Nagumey (1984, 1986) and Mahmassani and Mouskos (1988, 1989).

This issue reemphasizes the advantage of a simulation-based approach in addressing
the dynamic traffic assignment problem. The traffic flow simulator implicitly accounts
for link interactions when a capability for turning movement penalties is incorporated in
it, which is significant for the path processing aspects of the problem.

The above section has illustrated the difficulties involved in modeling the system-
optimal assignment problem for the ATIS/ATMS context, and how a simulation-
assignment strategy overcomes these problems.
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assigned to the various paths of the network, via the dynamic link-path incidence.
The second form of the objective function simply states that the total travel time of

all vehicles assigned to the various paths during the duration of ATIS application is some
function of the assignment. This objective function can be evaluated by any available
means. We do it through simulation.

Constraint (1) is a definitional constraint stating that O-D desires assigned to the
various paths should sum up to the demand (conservation at the origin). Constraint (2)
states that vehicles cannot be stored at intermediate nodes, that is, the number of vehicles
exiting from all links incident on an intermediate node should equal the number of
vehicles entering all links incident from that node at any given time. Constraint (3)
represents the conservation of vehicles on a link and states that the total number of
vehicles on any link at the end of the current time interval is the net algebraic sum of
vehicles on that link at the end of the previous time period, vehicles entering that link
during the current period and vehicles exiting that link during the current period.

Constraints (4), (5) and (6) represent the time-dependent link-path incidence
relationships which fundamentally characterize the dynamic assignment problem.
Constraint (4) represents the dynamic relationship between the number of vehicles
assigned to various paths and their aggregation on links. Constraint (5) illustrates the
calculation of the path travel times using the dynamic link-path incidence variables. The
number of time steps in which the dynamic incidence variable takes a value 1 implies the
number of discrete time steps that a vehicle (or a group of vehicles) spent in the system,
and multiplying with A gives the actual travel time in the system. One of the most
commonly used indicators of system performance is the total time spent by vehicles in
the system, and the path travel times conveniently allow the evaluation of this indicator.

Constraint (6) states that the dynamic link-path incidence variables are a function of
the assignment. As noted, this fundamental fact expresses the essence of the dynamic
assignment problem.

Constraints (7) and (8) are definitional constraints for the number of vehicles
entering and exiting links in the various time intervals. Constraint (9) defines temporal
correctness. Constraint (10) restricts the dynamic incidence variables to take values of 0
or 1. Constraint (11) represents the non-negativity requirement.
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Rolling Horizon Formulation
This formulation represents a more realistic scenario of the information available to

the controller. It assumes that information will be available for a “short” duration into the
future. This provides the opportunity to use a rolling horizon approach with forecasted
future O-D desires. The basic idea behind the rolling horizon approach is that current
events will not be influenced by events “far” into the future. In the context of the ATIS
problem, this is analogous to stating that vehicles currently assigned will not be
influenced by vehicles assigned “far” into the future as the currently assigned vehicles
will probably be out of the system by that time. The stage length h in Figure 15 depicts
that length of time (its value in actual problems is network specific). The roll period l
represents the short duration into the future for which O-D desires are available with
reasonable certainty. To make an assignment of vehicles to various paths for the current
period, the controller requires knowledge of O-D desires for the rest of the stage length as
these O-D desires are expected to influence current assignments. These O-D desires may
be forecasted based on historical data and current information. The O-D desires beyond
the stage length h are assumed to be zero. The situation is now analogous to the complete
information availability scenario, albeit, only for the duration covered by the stage length
h. The system is solved for optimality only for the duration of the stage length and O-D
desires for the roll period (which are known with certainty) are assigned to the paths
determined. The time frame is now “rolled” forward by a length equal to the roll period
and the above process is repeated till the end of the duration for which ATIS is applied to
the system. Hence, a series of optimizations are performed till the planning horizon is
covered. The formulation is illustrated below :

l  (roll period)

| |

h (stage length)
Figure 15. Rolling Horizon Approach
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expected future objective function is also minimized. The constraints are identical to the
constraints in the previous formulation. The objective function is a complicated
nonlinear expression and the methodology for its evaluation needs further research.

The solution methodology for the first formulation (full information) is presented
next. It may also be applied for the second (rolling horizon).

SOLUTION METHODOLOGY 
Simulation-Assignment Approach

A simulation based algorithm is used to solve the system optimal dynamic traffic
assignment problem described in the aforementioned problem statement. A traffic
simulator is used to evaluate the objective function, ensuring consistency with realistic
traffic behavior (FIFO, no holding back of traffic). The procedure assigns vehicles to
various paths directly, obviating the need to infer a path assignment from the solution to a
link-based formulation. The DYNASMART (Dynamic Network Assignment-Simulation
Model for Advanced Road Telematics) assignment-simulation model developed at The
University of Texas at Austin is used to simulate traffic.

This section describes the algorithm for SO and UE assignment strategies. It
consists of a heuristic iterative procedure in which a special-purpose traffic simulation
model is used to represent the traffic interactions in the network, and thereby evaluate the
performance of the system under a given assignment. The algorithmic steps for UE
assignment are virtually identical to those for the SO solution except for the specification
of the appropriate arc costs and the resulting path processing component of the
methodology. The algorithm is first summarized for the SO case, followed by a brief
description of the modification for the UE problem.

The use of a traffic simulation model to evaluate the SO objective function and
model system performance circumvents the principal difficulties that have precluded
solutions to realistic formulations of the problem, by obviating the need for link
performance functions, link exit functions and implicitly ensuring that the first-in, first-
out property holds on traffic facilities and that no unintended holding back of traffic takes
place at nodes. The algorithm uses the DYNASMART simulation-assignment model.
DYNASMART has the capability to simulate the movement of individual vehicles
through the network, with path selection decisions possible at every node or decision
point along the way to the destination, as supplied by the user decision rules reflecting
driver behavior in response to real-time information. In this work, vehicular paths are
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pre-assigned exogenously to DYNASMART, as determined by the steps of the SO or UE
solution algorithms. Thus DYNASMART is used primarily as a simulator to replicate
the dynamics of traffic phenomena in response to a given assignment of vehicles to paths.
A detailed description of the various capabilities of DYNASMART is provided in the
previous two chapters.

The simulation results provide the basis for a direction finding mechanism in the
search process embodied in the solution algorithm for this nonlinear problem. The
experienced vehicular trip times from current simulation are used to obtain a descent
direction for the next iteration. The time-dependent shortest travel time paths and least
marginal travel time paths are obtained using the time-dependent algorithms described in
Ziliaskopoulos and Mahmassani (1992), and discussed in Chapter 7. Note that the
solution methodology avoids complete path enumeration between O-D pairs.

Description of the Approach
The overall solution methodology is shown in Figure16 for the formulation under

which O-D desires are assumed known for the whole assignment duration. It can be
suitably modified for the rolling horizon approach which involves repeatedly solving
deterministic sub-problems as discussed previously. The algorithm is an extension of
well-known solution methods for the static assignment problem, with key differences in
each component of the algorithm and significant additional implementation challenges.
A brief summary of the approach is as follows:
1. Set the iteration counter I = 0. Obtain the time-dependent historical paths (paths
obtained from database) for each assignment time step over the entire duration for which
assignment is sought.
2. Assign the O-D desires (which are known a priori for the entire peak period) for the
entire duration to the given paths and simulate the traffic patterns that results from the
assignment using DYNASMART.
3. Compute the marginal travel times on links using time-dependent experienced or
estimated link travel times and the number of vehicles on links obtained as post-
simulation data (from step 2).
4. Using a special-purpose time-dependent least cost path algorithm, compute the least
marginal time paths for each O-D pair for each assignment time step based on the
marginal travel times obtained in step 3.
5. Perform an all-or-nothing assignment of O-D desires to the least marginal time paths
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computed in the previous step. The result is a set of auxiliary path vehicle numbers for
each O-D pair for each assignment time step t = l,............, T.
6. Update paths and the number of users assigned to those paths. Update of paths is done
by checking if the path identified in step 4 already exists (i.e., has carried vehicles in at
least one prior iteration) for that O-D pair and including it if it does not. The update of
the number of vehicles (assignment of vehicles to the various paths currently defined
between the O-D pair after the path update) is performed using the Method of Successive
Averages (MSA), which takes a convex combination of the current path and
corresponding auxiliary path numbers of vehicles, for each O-D pair and each time step.
A detailed description of MSA is provided in Sheffi and Powell (1982). Note that other
convex combination schemes could equally be used.
7. Check for convergence using an E -convergence criterion (in terms of the difference
between iterations in number of users on each path).
8. If convergence criterion is satisfied, stop the program. Otherwise, update the iteration
counter I = I + 1 and go to step 2 with the updated data on paths and the number of
vehicles assigned to each of those paths.

The complexity of the interactions captured by the simulator when evaluating the
objective function generally preclude the kind of well-behaved properties required to
guarantee convergence of the algorithm in all cases.

It should be noted, to help clarify certain aspects that pertain to the implementation
of this algorithm, that the assignment time interval is typically different from the
simulation time step used in DYNASMART. The latter is intended to provide an
accurate depiction of traffic phenomena, and has a resolution of a few seconds (6 seconds
is our default value). On the other hand, the assignment interval corresponds to a period
over which O-D demands are not expected to vary much; the decision variables (number
of vehicles assigned to alternative paths) are defined for the assignment intervals, which
are expected to be of the order of minutes, say 3 to 5 minutes, Therefore, an assignment
interval will typically consist of 30 to 50 simulation time steps. All post-simulation
information from DYNASMART is available for every simulation time step. Path
processing (shortest path) algorithms may proceed at any resolution between the
simulation time step and the assignment interval, with different implications for
computational efficiency and possibly the accuracy of the procedure. Guidelines
regarding these aspects can only be obtained through extensive numerical
experimentation.
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DYNASMART

LINKMARGINAL
TRAVEL TIMES

TIME-DEPENDENT
LEAST COST PATH

ALGORITHM

ALL-OR-NOTHING
ASSIGNMENT

XP(O,D,T,K,I)  -- The number of
O-D desires in period T assigned
to path K between origin 0 and
destination D at the I th iteration

YP(O,D,T,K,I) -- All O-D desires
in period T are assigned to auxiliary
path K between origin 0 and
destination D at the I th iteration

Method of Successive Averages

AUXILIARY
PATHS

YP(O,D,T,K,I)

UPDATE
(MSA)

(MSA)
[XP(O,D,T,K,I+l) =

(l- a ) * XP(O,D,T,K,I) +

a * YP(O,D,T,K,I)]
where

a = l/(I+1)
I=012, , ,..............

YES

NO

Figure 16. Solution Algorithm for the System Optimal Dynamic Traffic Assignment Problem
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Finally, note that the “planning horizon” here is simply the period of analysis; it is
subdivided into a number of assignment intervals for which O-D information is expected
to be generated.

Modification to Obtain User Equilibrium Solution
As previously discussed, the solution to the time-dependent UE problem is obtained

by assigning vehicles to the shortest average travel time paths instead of the least
marginal paths in the direction finding step (step 5). In other words, use the (time-
dependent) average travel times on links instead of the marginal travel times in the
shortest path calculations. In the above solution procedure, this simplifies step 3 and
modifies step 4 as indicated.

Discussion of Methodology
This section describes the various components of the simulation-assignment

methodology to solve the system optimal problem. The section starts with a brief
introduction to DYNASMART. This is followed by an illustration of the approach used
to obtain the time-dependent marginal travel times. Next, the time-dependent least cost
path algorithm is briefly addressed. The details of the updating mechanism are described,
followed by the path assignment procedure which interfaces the update mechanism with
DYNASMART.

The Simulation Model -- DYNASMART
DYNASMART is a fixed time step macroscopic simulation-assignment model for

IVHS applications, as described in the previous two chapters of this report. When
DYNASMART is used in conjunction with the above algorithm, vehicles follow the
paths corresponding to the current solution in the execution of the algorithm. This means
that the user decisions component is essentially inactive, as user choice consists of
following a given path. In the multiple user class formulation, some drivers follow paths
determined by the solution algorithm while others follow other rules, possibly including
compliance characteristics.

Similarly, the k-shortest path processing algorithms in the simulator need not be
executed when DYNASMART operates in a “pure” simulator mode for a given path
assignment solution. However, other path processing capabilities, namely time-dependent least
time and time-dependent least cost path algorithms are used as part of tire solution framework.
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DYNASMART is the basis on which the SO assignment solution methodology is
developed. In addition to the previously stated advantages of using simulation to
overcome problems like FIFO, holding back of traffic, and computation of an otherwise
analytically intractable objective function, DYNASMART furnishes important post-
simulation data which forms the basis for the remaining components of the algorithm.
After the current simulation, DYNASMART provides data on the average travel times,
predicted travel times and number of vehicles on each link of the network for each
simulation time step. The above information is used directly or indirectly in the marginal
path component, the time-dependent shortest path component, the update component, and
the path assignment component of the solution methodology.

Marginal Travel Times
This section discusses the significance of marginal travel times to the SO assignment

problem and the approach used to compute approximate path marginal travel times in our
solution methodology.

Significance of Marginals in SO Assignment. The SO dynamic traffic assignment
problem in the current context aims at minimizing the total system travel time. A global
path marginal travel time denotes the travel time increment to the system by the addition
of one vehicle to that path. Hence, the solution to the SO dynamic assignment problem
would entail assigning O-D desires to the time-dependent shortest global marginal path in
order to obtain a descent direction towards the desired minimum time solution (see Ghali
and Smith (1992)). The computation of global marginals would entail computationally
intensive brute force approaches to capture secondary effects that arise from network
interactions over different time periods. The approach used here calculates the marginal
costs in only an approximate manner that ignores some of the spatial and temporal
interactions taking place in the network. In particular, the marginal cost imposed by an
additional vehicle on a given path at a particular time is assumed here to be limited to
impeding vehicles on the links constituting that particular path (still correctly recognizing
the time-dependent incidence of that vehicle on the links). It may therefore be possible to
improve on the solution obtained by using a more elaborate procedure to estimate the
marginal costs.

A “first-order” approximation to the marginals is proposed by limiting the
marginal travel time on a link to the travel time contribution of an additional traveler on
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that link to the total travel time on that link. The path marginal total travel times are
obtained by a summation of the time-dependent marginal link travel times (the marginal
link travel time includes the actual time-dependent link travel time and the time-
dependent marginal contribution of an additional traveler) for all links on that path.

Methodology for Obtaining Marginals.  At the end of the current simulation, the time-
dependent link travel times and the number of vehicles present on each link are obtained
from DYNASMART. The marginal link travel times are obtained according to the
following relationship :
For each O-D pair,

mltt(a,t) = tt(a,t) + itt(a,t) . x(a,t)
where

mltt(a,t) = marginal travel time in period t for link a
tt(a,t) = travel time (experienced/estimated) in period t for link a
itt(a,t) = increment in travel time in period t to traveler already on link a due to the

additional traveler
x(a,t) = number of vehicles on link a at time t
The product of itt(a,t) and x(a,t) gives total increment in the link travel time due to an

additional traveler on link a in period t, which is the sum of the additional increase in
travel time that each of the currently present x(a,t) vehicles on link a experience. The key
problem here is the evaluation of itt(a,t) which is the derivative of tt(a,t) with respect to
x(a,t). The method to evaluate itt(a,t) is illustrated in Figure 17.

Figure 17 shows a plot of travel time tt(a) on link a versus the number of vehicles
x(a) on link a. In the static case, the link travel times and flows are assumed constant.
Hence, the calculation of the derivative using a static link-performance function is trivial.
In the dynamic case, the travel times and the number of vehicles on a link are time-
dependent. Consequently, the derivative is time-dependent and this makes its evaluation
problematic.

The approach we use assumes that the time-dependency of the derivative is due to
“time-dependent” link performance functions. This means the tt(a) vs x(a) curve for link
a depends on the conditions on the link at that time, The link-performance curve changes
gradually over time which is to be expected due to the dynamic nature of the problem. If
the time interval between successive evaluations of marginals is small, it appears
reasonable to assume that three consecutive points in time are on the same link
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number of vehicles or both. The simulation time interval we used in DYNASMART is 6
seconds. This interval is too small for update of paths for a given O-D pair as no
appreciable change takes place in the system in such a short time. An assignment interval
of 3 to 5 minutes is used for updating the paths. The marginal values are necessary for
assignment intervals only and not for simulation intervals. One averaging technique to
obtain the marginal travel time for the assignment intervals is by averaging the marginal
travel time values for the simulation intervals between successive assignment intervals
and using that value for the latest assignment interval. Computing a moving average of
marginals over the last n assignment time intervals is another averaging technique (that
has also been tested in some versions of our implementation). The marginal values can
also be computed by taking an average of the marginal travel times for all vehicles which
are present on a link sometime during the duration of an assignment interval.

Another issue with regard to the computation of marginal travel times is the value of
travel time tt(a,t) that should be used to compute the marginals. Post-simulation data
gives two types of travel times, “average” or (“estimated”) and “experienced”. The
average travel time on a link (for a given interval) is based on an analytical model relating
speed to the concentration on the link, as well as the estimated queue discharge time.
Alternatively, the net effect of the various traffic phenomena interacting at a given
location could be captured by the experienced travel times of vehicles in the simulated
system. The “experienced” time is the difference between the respective times of exit and
entry of a given link by a certain vehicle.

Improvement of the approximate marginal cost calculation methods and selection of
appropriate time intervals and averaging techniques are the subject of continuing
numerical tests.

Time-Dependent Shortest Marginal Path Computation
An essential element in the application of IVHS to congested traffic networks is the

time-dependence of travel times. So-called “anticipatory” real-time route guidance aims
at routing vehicles in real-time in a network based on the travel times they would
experience on the various links of their path (as opposed to routing based on current
travel times). The problem consists of finding the shortest path from a node to all other
nodes in a directed graph with time-dependent travel times. Dreyfus (1969) proposed that
the problem could be addressed by using Dijkstra’s algorithm in an expanded static
representation of the time-varying problem for deterministic travel times. Kaufman and
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Smith (1990) made explicit an assumption that is sufficient for the validity of Dreyfus’
approach and discussed this issue from an IVHS perspective. This problem is reviewed
in more detail in Chapters 6 and 7.

The marginal travel times on paths are obtained by a summation of marginal link
travel times for all links on that path. Time dependency of the marginal link travel times
requires a time-dependent least cost path algorithm to calculate the paths. A state-of-the-
art time-dependent least cost path algorithm developed at The University of Texas at
Austin which is coded for efficiency in the computational time and customized for use
with DYNASMART in the solution methodology is used to obtain the shortest marginal
time-dependent (auxiliary) travel paths based on the marginal link travel times and
average link travel times. The various capabilities of the algorithm including recognition
of turn movements and use of very efficient data structures are discussed in
Ziliaskopoulos and Mahmassani (1992a, 1992b), as well as in Chapters 6 and 7 of this
report, An all-or-nothing assignment of the O-D desires is made to the auxiliary paths.

Figure 18 highlights the procedure for the computation of the shortest marginal
paths. The time-dependent least cost path algorithm requires average and marginal link
travel times as inputs. This seemingly unimportant detail reflects a subtle but
conceptually important point for correct calculation of time-dependent marginal shortest
paths. A least marginal path calculation based solely on marginal link travel costs is
incorrect because marginal link travel time does not have a physical interpretation. The
correct shortest marginal path computation uses marginal link travel times as link
penalties and average (or experienced/estimated) link travel times as link movement
costs, as illustrated in the following example.

The portion below the flow chart in Figure 18 shows a path from i to j. Starting at
node i at time t, link 1 (i-k) is chosen as the next link on the path based on the link
penalty mltt(l,t) which is the marginal link travel time on link 1 at time t. However, node
k is reached at a time att( 1 ,t) and not mltt( 1 ,t) as att( 1 ,t) is the actual time taken to move
on link 1. Consequently, the marginal link travel time considered on link 2 (k-j) is
mltt(2,t+att(  1 ,t)) and not mltt(2,t+mltt(  1 ,t)).

The step following an all-or-nothing assignment is the update of paths. It addresses
the distribution of O-D desires for a particular O-D pair at a given time to the various
“optimal” paths at that time. It was indicated previously that an all-or-nothing assignment
would be used in some manner for distributing vehicles to paths. The next section
illustrates this approach.
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For every assignment interval and for each O-D pair, the time-dependent O-D
desires, the set of paths and the splits of vehicles to paths are available at this point.
Figure 20 describes the interface with DYNASMART. The path assignment component
randomly assigns vehicles to the various paths for a given O-D pair in a given interval
while satisfying the requirement on the relative splits of O-D desires to the various paths.

VEHICLE IN
IDENTIFIED BY O,D,ST

RANDOM ASSIGNMENT
OF PATH TO VEHICLE

FOR GIVEN O,D,ST

DYNASMART

T = assignment interval

t = simulation interval

T ST = trip start time
Figure 20. Assignment of Path to Each Vehicle
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EXPERIMENTAL ANALYSIS
This section describes two sets of experiments for the single user class dynamic

traffic assignment problem. A number of experiments (Experiment Set I) have been
conducted to derive insights on the dynamic system performance under alternative
assignment strategies and under different intensities of network loading, thereby
prescribing directions for the focus that ATIS information supply strategies should take,
and characterizing the circumstances when alternative assignment strategies will be
effective. A principal objective of this set of experiments is to provide a comparative
assessment of system performance under the system optimal and user equilibrium
dynamic traffic assignments. Additional experiments (Experiment Set II) have been
conducted to investigate the system performance under another assignment strategy that
provides users with descriptive real-time information and assumes users to follow
boundedly-rational path switching rules, and to compare the effectiveness of this strategy
vis-a-vis the SO and UE strategies. In addition, this set of experiments also tests the
sensitivity of the system performance to key parameters such as temporal loading patterns
and market penetration. Another principal objective of these two sets of experiments is to
analyze time-dependent relationships among network traffic flow descriptors to
characterize the vastly varying network traffic conditions during peak periods of traffic
flow and to obtain insights into the quality of service afforded under alternative
information supply strategies.

Experiment Set I
Motivation and Objectives

The performance of a traffic network employing the solution methodology discussed
in a prior section of this chapter is analyzed under both system optimal and user
equilibrium time-dependent assignments. As in the static case, system optimal and user
equilibrium dynamic assignments involve similar algorithmic steps, differing primarily in
the specification of path travel costs that form the basis of the corresponding assignments.
System optimal (SO) dynamic assignment is accomplished using time-dependent
marginal travel times (see Ghali and Smith, 1991), whereas a user equilibrium (UE)
assignment is attained using the time-dependent average travel times. We analyze the
system performance under the above assignment schemes for different intensities of
network loading covering the spectrum of network states from uncongested networks to
very highly congested networks. In addition, the numerical experiments illustrate the
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extent of the differences between SO and UE time-dependent assignments in terms of
total system cost, at varying levels of network congestion. This question is of
fundamental importance to ATIS operations, with regard to the relative benefits of
normative versus descriptive information supply strategies.

As noted previously, interpretation of the time-dependent UE solution is not evident
from the standpoint of ATIS. It is considered here as a useful proxy for a favorable
scenario of long-term network performance under real-time descriptive information.

It is known from static network equilibrium theory that SO and UE lead to identical
solutions only for situations where the shortest paths taken by users are simultaneously
the best paths from a system viewpoint. Such situations are observed when networks are
relatively uncongested so that link operating speeds are unaffected by the flows on the
links (limited vehicle interactions). At the other extreme, under very highly congested
conditions, system performance is not likely to be markedly different under the two
assignment schemes because the opportunities for SO to sufficiently ameliorate the traffic
situation would probably be limited.

For network conditions between the two extremes, the extent of the differences
between SO and UE solutions, particularly in terms of overall system cost, are not
known. This is very important for ATIS, because if the two solutions are not perceptibly
different, coordinated cooperative SO route guidance imposed by a central controller may
not be necessary, and less complicated and simpler to implement descriptive information
to non-cooperating drivers may be sufficient. If this were the case, there would be
important implications for the focus that ATIS information supply strategies should take,
with more attention directed to ways of guiding the system towards UE convergence and
away from wide fluctuations. However, if SO indeed holds promise for meaningful gains
over UE, then normative route guidance and/or strategies to induce the system near its SO
should be pursued. Of course, it is also desirable to ascertain network and traffic
conditions under which differences between SO and UE are meaningful.

The overall user cost and network performance under time-dependent SO and UE
assignment patterns are examined in a series of numerical experiments performed on a
test network under different loading levels. The system performance is gauged using
average network level traffic flow descriptors, in addition to the standard parameters like
average travel time. The time-dependent nature of the problem further complicates the
already intricate problem of characterizing traffic flow performance at the network level,
previously addressed only under steady-state conditions, as discussed hereafter.
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Network Traffic Flow Theory
Mahmassani, Williams and Herman (1984, 1987) generalized the definitions of speed,
flow and concentration to the network level and examined their interrelation in their
model of network traffic performance. These concepts are extended to the dynamic case
in the current analysis, in order to characterize the vastly varying network ‘traffic
conditions (especially for medium to high network loading levels) during the peak period.
Average network speed V (kmph) is obtained as the ratio of total vehicle-kilometers to
total vehicle-hours in the network over the duration of interest. The average network
concentration K (vehicles per lane-km), for the duration of interest, is the time average of
the number of vehicles per unit lane-length in the system. However, the concentration
varies dramatically with time in dynamic traffic networks. Hence, the time-dependent
network concentration is examined by taking 5-min averages of number of vehicles per
unit lane-length in the system. An overall measure of network concentration K over the
duration of the period of interest is obtained by taking the arithmetic average of the 5-min
averages. Similarly, time-dependent network flow, interpreted as the average number of
vehicles per unit time that pass through a random point along the network, is examined
by taking 5-min averages; an overall measure of network flow Q over the peak period is
obtained by taking the simple average of (E li qi ) / (E li ), where qi and li respectively

denote the 5-min average flow and the length of link i, and the summations are taken over
all network links.

Two fundamental relationships between these three network traffic flow variables are
investigated in this study. The first relates average network speed, V, and average
network concentration, K. For arterials or single roadways, a qualitative trend of
decreasing speed with increasing concentration is well established. The same general
trend was observed to hold at the network level in the simulation experiments of
Mahmassani et al. (1987), though the complexity of network interactions preclude the
analytic derivation of such a relation directly from the link-level relations. The second
relationship analyzed is the basic identity Q = KV. Formally established for single
roadways, it was shown to also hold at the network level in the previously mentioned
steady-state experiments (1987). These experiments were performed keeping the
network concentration level constant for the duration of interest by treating the network
as a closed system. The NETSIM package was used for the study and vehicular behavior
was governed by the comprehensive microscopic rules embedded in NETSIM. The
present study replicates the network traffic conditions of a rush hour traffic situation, and
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uses DYNASMART. The Q = KV identity is expected to hold only approximately for
time-varying network traffic flow.

Experimental Design and Set-up
This section first details the network configuration and traffic characteristics of the

test network used in this study. This is followed by an illustration of the experimental
set-up.

Network Configuration and Traffic Characteristics
The test network used in this study consists of a freeway with a street network on

both sides as shown in Figure 21. It has 50 nodes and 163 links. Nodes within the
freeway section are neither origin nor destination nodes. 38 origin nodes and 38
destination nodes are obtained by excluding freeway nodes (nodes l-37 and 44).
Freeway nodes are connected to the street network through entrance and exit ramps.
Unless otherwise indicated, all arcs shown are two-directional. All links are 0.83 km (0.5
miles) long and have two lanes in each direction except for the entrance and exit ramps
which are directed arcs with a single lane. The freeway links have a mean free speed of
91.67 kmph (55 mph) and the other links have a 50 kmph (30 mph) mean free speed. In
terms of traffic signal characteristics, 25 intersections have pre-timed signal control, 8
have actuated signal control and the remaining 17 nodes have no signal control.

Experimental Set-up
The comparative assessment of system performance for system optimal and user

equilibrium assignments is conducted under different network loading levels, which
generate different levels of network congestion. We define the network loading factor as
the ratio of the total number of vehicles generated in the network during the assignment
period to a given reference number (19403 vehicles over a 35-minute period in our
experiments). Table 15 shows the different loading factors considered in this set of
experiments, and the corresponding number of vehicles generated on the test network
during the duration of interest (35 minutes in all cases). In addition, it shows the
corresponding number of “tagged” vehicles (vehicles generated for the 30 minute
duration after the 5 minute start-up time) for which relevant performance statistics are
accumulated. The loading factors range from 0.6 (very low congestion with 11616
vehicles) to 2.4 (extremely high congestion with 46674 vehicles). Under each loading
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Table 15. Loading Factors and the Corresponding Numbers of Generated Vehicles
and Tagged Vehicles for the First Set of Numerical Experiments

Loading Factor Number of Generated Vehicles Tagged Vehicles

0.6 11616 10585
0.8 15509 14098
1.0 19403 17621
1.2 23305 21145
1.4 27196 24697
1.6 3 1090 28205
1.8 34978 31726
2.0 3887 1 35258
2.1 40818 37014
2.2 42769 38784
2.4 46674 42322

8000

6000

20
Time (minutes)

Figure 22. Time-Dependent Vehicle Generation
(shown as S-minute aggregates) for Loading Factor 2.0

97



level, the UE and SO solutions are obtained, and the resulting time-dependent link flow
patterns are obtained from DYNASMART. Figure 22 shows a sample time-dependent
loading pattern for a loading factor of 2.0. The indicated points on the graph correspond
to the number of vehicles generated in the 5-minute interval centered on the location of
each point; the lines connecting the points are physically meaningless and are included
only for visual convenience. The shape of the loading curve for other network loading
levels is approximately the same, though appropriately scaled in magnitude. This
temporal pattern emulates real-world network loading for the peak period, with an
initially increasing generation rate until a peak is reached, followed by a decreasing
vehicle generation rate.

In the present study, a start-up time of 5 minutes is provided in DYNASMART for
the network to be reasonably occupied, followed by a 30 minute peak period generation
of traffic (for which performance statistics are accumulated). Another aspect of the
experimental set-up which critically influences the system performance is the spatial
distribution of the O-D demand pattern. The vehicles generated are about evenly
distributed spatially, both in terms of their origins and destinations, except for nodes 37
and 44 which generate/attract only about 25% the number of vehicles
originating/destinated  to a typical origin/destination node (i.e. nodes l-36).

Analysis of Results
The results from the various experiments are viewed from two principal perspectives.

First, they form the basis for comparison of system performance, particularly user costs
under UE and SO assignment schemes, thereby addressing the questions relevant to ATIS
information strategies described in Experiment Set I. Secondly, they are used to
investigate network level traffic flow characteristics and relations using network-wide
traffic descriptors. This investigation is conducted primarily for the SO flow pattern. An
additional element of the study is the time-dependent analysis of the travel time gains of
SO over UE, also of significance to ATIS operation.

The results provide several key insights from both of the above perspectives. They
manifest a clear qualitative and quantitative distinction in the solution provided by the SO
assignment scheme as opposed to the time-dependent UE assignment procedure to route
vehicles in a traffic network. The results also reveal important and robust macroscopic
relationships among network level traffic variables which parallel those for single
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roadways. Of course, it must be kept in mind that these results are based on a single
network topology, and should not be generalized indiscriminately. The primary purpose
of these experiments is to illustrate the algorithmic procedure developed for time-
dependent SO and UE assignment, and demonstrate its applicability to investigate
important substantive questions of network traffic performance.

Table 16. Summary Statistics for System Optimal Assignment

Loading Av. Trip Total Trip Time Average Trip Total Trip
Factor Time Distance Distance

(minutes) (hours) (km) (km)

Average
Speed
(kmph)

0.60 3.85 679.54 3.03 32096.25 47.23
0.80 3.90 916.05 3.02 42411.67 46.30
1.00 4.03 1183.06 3.03 36820.42 45.22
1.20 4.40 1549.48 3.07 64728.75 41.77
1.40 4.86 1999.10 3.08 76207.92 38.12
1.60 6.04 2837.07 3.20 90222.08 31.80
1.80 7.65 4042.9 1 3.28 103997.50 25.72
2.00 10.46 6149.46 3.32 117013.33 19.03
2.10 13.08 8071.91 3.35 123996.67 15.37
2.20 16.57 10710.93 3.32 128811.67 12.03
2.40 24.95 17601.78 3.55 149978.33 8.52

NOTE: 1 km = 0.6 mile

Table 16 reports summary statistics on the system performance for the SO
assignment for the different loading factors. As expected, at low levels of network
loading, when the network is relatively uncongested, the average travel times of vehicles
in the network are relatively close across the different loading levels. As the load is
increased, the effects of congestion become more prominent and the average travel times
in the network increase at an increasing rate with the loading factor. At very high loading
levels, the marginal effect of additional demand on system performance is very high. The
results also indicate that there is only limited variation in the average distance traveled by
vehicles under the various network loading levels, implying that greater congestion and
not longer travel routes is the primary cause of the higher system trip times (the objective
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function seeks to minimize total system travel time only). Nevertheless, the average
travel distance does increase with the loading level, reflecting an increasing percentage
(though small in magnitude) of drivers assigned to longer travel routes.

Table 17 presents similar summary statistics for the UE assignment. The trends are
similar to those described above for the SO case. The average travel distances under UE
for various network loading levels are smaller than the corresponding distances for SO,
indicating a smaller percentage of long travel routes under UE. This may be explained by
some users being assigned to longer routes in order to reduce congestion elsewhere so as
to reduce systemwide travel times.

Table 17. Summary Statistics for User Equilibrium Assignment

Loading Av. Trip Total Trip Time Average Trip Total Trip Average
Factor Time Distance Distance Speed

(minutes) (hours) (km) (km) (kmph)
0.60 3.86 681.52 3.00 31839.58 46.72
0.80 3.92 920.8 1 2.97 41898.33 45.50
1.00 4.15 1219.46 2.98 52656.25 43.18
1.20 4.60 1622.47 3.02 63731.25 39.28
1.40 5.43 2236.52 3.00 74289.58 33.22
1.60 6.79 3192.16 3.08 87 165.42 27.30
1.80 9.00 4762.95 3.13 99513.33 20.88
2.00 12.91 7587.70 3.27 115249.17 15.18
2.10 14.94  9215.69 3.22 119132.50 12.93
2.20 18.55 11993.56 3.32 128605.00 10.72

NOTE: 1 km = 0.6 mile

Figure 23 shows comparatively the average trip times under various network loads
for UE and SO assignments. As discussed above, both curves illustrate the increasing
marginal effects of additional demand on system trip times. Figure 23 highlights the
difference in the quality of the solutions provided by the two assignment rules for time-
dependent network flows. This is further illustrated in Figure 24 which depicts the
percentage improvement in average travel time of SO over UE (as a fraction of the UE
travel time) for the various average network concentrations corresponding to the various
levels of network loading. At low loading levels, SO and UE provide essentially
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As the levels of network loading are increased further, the system reaches very high
levels of congestion that near gridlock, and overall network throughput drops, making it
increasingly difficult to discharge all vehicles from the system in a reasonable amount of
time. Under these conditions, the ability to improve overall conditions by re-routing
certain vehicles to paths with lower marginal costs diminishes, as all links become highly
congested. Thus, the advantage of an SO assignment relative to UE begins decreasing, as
reflected by reduced improvements of 12.4% and 10.7% for loading factors of 2.1 and 2.2
respectively. The gains begin dropping rapidly beyond this point, with higher loading
levels eventually yielding negligible differences in the quality of the solution provided by
the two schemes.

10000 20000 30000 4oooo 50000̀
Network Load (vehicles)

NOTE: The number by each plotted point is the corresponding loading factor

Figure 25. Trip Time Savings for SO over UE (in minutes/vehicle) as a Function of
Network Load (the savings are assumed to be equally distributed among all the

vehicles generated for that loading factor)
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Figure 25 represents the average trip time improvement per vehicle under SO
assignment for various levels of network loading. The results mirror the conclusions
from Figures 23 and 24. Of course, this improvement in trip time is not experienced
uniformly by all vehicles; in particular, it varies over the vehicle’s time of departure
during the peak period. The time-dependent nature of the travel time savings is examined
below.

Figure 26 depicts the cumulative demand generation as a function of time under the
2.0 loading factor along with the cumulative discharge curves under the SO and UE
assignments. The various points on the plot are obtained by accumulating the statistics
available for each S-minute interval. The area on the plot between the two discharge
curves represents the time savings of SO over UE, in this case about 1438 hours. The
figure illustrates the time-dependent nature of the benefits generated by SO over UE.
When the network is in the early stages of loading (for about the first 20 minutes), it is
not sufficiently congested to produce meaningful differences between SO and UE
assignments. Most of the savings of SO are accrued between thirty and seventy minutes
into the peak period as the network is close to peak congestion levels. Beyond seventy
minutes, there appear to be virtually no significant gains of SO over UE as the network is
again relatively uncongested. Thus the benefits of route guidance based on SO
assignment over UE routing are not accumulated uniformly over time - rather they are
gained when the network is relatively well congested.

Figure 27 depicts the time savings per vehicle for SO over UE as a function of the
vehicle’s time of departure under different loading factors. To capture the time-
dependency of the benefits in a systematic manner, travel time savings are accumulated
based on the start times of the vehicles. In the figure, O-5 on the y-axis (start time) refers
to all vehicles that start between zero and five minutes. Vehicles that start during the first
five minutes do not face congested conditions and hence SO does not yield savings over
UE for these vehicles. Vehicles that start during the intervals 10-15 and 15-20 minutes
accrue time savings at an increasing rate as the (cumulative) loading level increases.
Over their trip, these vehicles encounter significant congestion that increases with the
loading factor. For vehicles starting between 20 and 35 minutes, the benefits increase
with network loading at an increasing rate until the 2.0 loading factor level, and then dip
down.
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benefits for a SO assignment relative to UE. As congestion builds up, the SO assignment
provides substantial benefits, until a peak is obtained for vehicles starting between twenty
and twenty-five minutes. Hence, benefits begin diminishing for vehicles entering the
network towards the end of the peak period. At a loading factor of 2.0, the same general
trend is observed as above, though it is more marked because of the higher levels of
congestion. Very high levels of congestion are observed for some period of time for a
loading factor of 2.2, leading to reduced relative effectiveness of SO compared to U E  for
vehicles that face those congestion levels. This is reflected in the sudden drop of savings
for vehicles starting between twenty and thirty minutes.

Min

rt Time (miniutes)

utes

Figure 27. Trip Time Savings (of SO Relative to UE) Per Vehicle (in minutes)
as a Function of Loading Factor and Start Times (in minutes) of Vehicles
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Network Flow Relations
The second aspect investigated through the experimental results relates to the

macroscopic network level traffic theoretic relationships among network-wide traffic
descriptors for dynamic traffic networks under consideration. The pertinent traffic
variables and their averages over time and space were defined previously. As noted,
while mathematical relationships among traffic flow variables are reasonably well
established for arterials and intersections, the intricacies of interactions at the network
level preclude analytic derivability of network-wide traffic relationships from the link-
level traffic models. However, the simulation results extend the previous findings of
Mahmassani et al. (1984, 1987) that the basic trends captured by the single roadway
relationships seem to also hold at the network level for the dynamic case.

Figure 30 shows the average network speed and average trip time under different
network loading levels for the SO assignment. Both curves are smooth indicating
relatively robust performance characteristics at the network level, and clearly illustrating
the increasing marginal effect of additional demand on the system performance.

The network level speed-concentration relationship for the SO assignment is
depicted in Figure 31. Each point on the plot corresponds to a simulation run for the
whole assignment period under a particular loading level. The figure clearly illustrates
decreasing average network speed with increasing network concentration, paralleling the
K-V relationship for an individual roadway. Note that the plot has a point of inflection
corresponding approximately to the 1.8 loading factor. This qualitative trend has been
observed previously in the simulation experiments of Mahmassani et al. (1984) on a
regular test network using the NETSIM package.

Table 18 examines the Q = KV relationship, which holds as an identity for a single
roadway. Results indicate that Q and KV differ by less than 5% for all cases, which is
well within the error introduced by the manner in which the time averages were
computed. As described in the first section, the average network flow and concentration
were calculated as an overall average of 5-minute averages, whereas the average network
speed was determined through quantities accumulated every 0.1 minute (length of a
simulation interval) of the simulation.

Figures 32 and 33 represent the network flow-concentration and speed-flow
relationships respectively. The plots indicate that the Q-K and V-Q relationships parallel
those for single roadways up to moderate levels of congestion, diverge somewhat as
congestion increases, and become confluent for very high congestion levels.

108











under this descriptive information supply strategy is compared to the performance under
SO and UE assignment strategies.

Another extension over the previous set of experiments is the study of time-
dependent relationships among network level traffic flow descriptors. Here vt, kt and qt
denote the time-dependent averages of speed, concentration and flow respectively,
corresponding to a five-minute interval starting at time t. The overall aggregate averages
are correspondingly denoted by V, K and Q. The time-dependent average network speed
vt (kmph) is defined as the ratio of total vehicle-kilometers to total vehicle-hours in the
network over each five minute interval t. The overall average network speed V (kmph) is
similarly calculated but over the entire duration of interest. The average network
concentration kt (vehicles per lane-kilometer) is the time average of the number of
vehicles per unit lane-length in the system for time interval t; K is similarly defined over
the entire duration of interest. The time-dependent average network flow qt is taken as
the average number of vehicles per unit time that pass through a random point (uniformly
located) along the network during interval t, and is calculated taking the simple average
of (E liqit / E li) where qit and li respectively denote the 5-min average flow and length
of link i, the summations being performed over all network links. The overall Q is
similarly obtained over the entire duration.

Experimental Design and Set-Up
This section first describes the structure and traffic characteristics of the test

network, followed by an overview of the experimental design and the assumptions made
in this set of experiments.

Network Characteristics
Figure 35 depicts the test network used in this set of experiments. It is very similar

to the previous one, with a few additional links and minor changes to provide better
circulation under the myopic switching options. In particular, 5 links have been added,
for a total of 168 links. With regard to the intersection signal control, 26 nodes have pre-
timed signalization, 8 have actuated signal control and the rest have no signal control.
The pre-timed signals have a 60 second cycle length with two phases, each with 26
seconds of green time and 4 seconds of amber time. The actuated signals have 10
seconds of minimum green time and 26 seconds of maximum green time.
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Figure 35. Network Structure for Experiment Set II
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Experimental Factors and Design
A number of experiments are conducted to examine network performance under

various information supply strategies and assignment rules in the context of electronic
route guidance systems.

Experimental Factors. The experimental factors considered in this study can be
separated into three primary categories:
1. Loading Patterns: Two loading patterns considered are referred to as loading profiles I
and II. Loading profile I generates vehicles uniformly over the assignment duration.
Loading profile II impacts the network with relatively large number of vehicles over a ten
minute period which is preceded and succeeded by low levels of uniform loading for the
rest of the assignment duration. The two profiles are designed so as to represent extremes
in loading conditions for the way in which they influence the system performance. A
typical peak period loading pattern would most likely lie between these two benchmarks.
In both cases, as in the first set of experiments, vehicles are generated over a 35 minute
period which includes a 5-minute start-up generation time, followed by a 30 minute
generation of vehicles for which statistics are accumulated. With regard to the spatial
distribution of the O-D trip desires under the two loading patterns, vehicles are generated
about evenly in space, both in terms of their origins and destinations, except for nodes 37
and 44 which incur only about 25% the volume (both as origins or destinations)
compared to a typical node (nodes l-36).
2. Demand Levels: The loading factor (LF) is defined as the ratio of the total number of
vehicles generated in the network during the assignment period compared to a base value
of about 19220 (which represents a loading factor of 1.0). Five different loading factors
are considered in the experiments, namely, 1.0, 1.4, 1.8, 2.0, and 2.2. The corresponding
number of vehicles generated for each loading factor is detailed in the Table 19. These
represent various levels of network congestion ranging from low (for LF = 1.0) to
moderately high (for an LF of 2.2). The two loading profiles discussed earlier are
designed so that a given loading factor generates about the same number of vehicles
under the two profiles.
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generated by the experiments. This trend is illustrated in Figure 38 which shows the
percentage improvement of SO over UE as a function of average network concentration
under loading profile I, and emphasizes a clear-cut demarcation in the quality of solutions
provided by SO and UE assignment rules. For example, SO gains 13.5% improvement
over UE for moderately high network congestion when the average network
concentration for the entire duration of interest is about 18 vehicles per lane-mile. Note
that the decreasing trend at very high concentrations in Figure 24 for Experiment Set I is
not observed here because these concentration levels were not reached in the second set.

6 12 18
Network Concentration (veh/lane-kilometer)

NOTE: The number by each plotted point is the corresponding loading factor

Figure 38. Percentage Total Trip Time Savings of SO over UE as a Fraction of
Total UE Trip Time Versus Average Network Concentration for Loading Profile I

Figure 39 shows the plots of average trip time versus network loading for SO and UE
assignment rules for loading profile I (as in Figure 36), and in addition the average trip
times for a strategy in which all vehicles are provided with real-time descriptive
information in the network and make switching decisions according to the boundedly-
rational user behavior rules (with a 0.2 indifference band and 1 minute threshold in the
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CONCLUDING COMMENTS
The evaluation of network performance under real-time information systems for

electronic route guidance has been confined to highly idealized network configurations
and limiting assumptions about various aspects of the problem, particularly user behavior
and traffic flow interactions. Theories of network performance under dynamically
varying traffic loads and real-time information availability to users are still in their early
stages of development, and methodologies to analyze performance of general networks
under such conditions are not available. The complexity of the problem arises from the
spatial and temporal interactions among individual tripmaker decisions, in response to the
supplied information, taking place in the traffic network. This degree of complexity has
precluded meaningful analytic treatment of the problem in general networks. Until
advances in theory and computation succeed in resolving the formidable difficulties of
the problem, computer simulation provides a powerful alternative to analyze the time-
dependent performance of traffic networks under a variety of conditions and assumptions
regarding user behavior, market penetration and other elements that are subject to
external uncertainty or correspond to system design parameters. By providing the analyst
with a high degree of experimental control, systematic investigation of network
performance and its determinants can be undertaken under a wider range of scenarios
than are practically available for observation.

The experiments performed using the simulation-based algorithm to solve both the
SO and UE versions of the time-dependent traffic assignment problem have provided
insights of critical importance to the design of ATIS information supply strategies and
results of fundamental significance in the context of network assignment and network
traffic flow theories. The experimental results proffer an illustration of the insights that
can be obtained on the basic constitution of the problems being addressed while
suggesting directions for future research. The first main conclusion is that the results
suggest meaningful differences in overall system cost and performance between time-
dependent system optimal and user equilibrium assignments. The second main
conclusion is that traffic networks under time-dependent traffic assignment patterns
continue to operate within the envelope of relatively simple network traffic flow
relationships that exhibit strong similarities to the traffic models established for
individual road sections.

If we take the UE assignment results as somehow indicative of the situation that
might be attained over time in a system where drivers have access to real-time on-board
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descriptive information through ATIS, the results of our experiments suggest that there is
considerable potential for system optimal, coordinated route guidance, especially in
heavily congested (though not oversaturated) networks. These results appear to
contradict unsupported claims that descriptive information would likely perform as well
as normative SO route guidance because UE system costs were claimed to be very close
to SO costs. Instead, they strengthen previous recommendations (e.g., in Mahmassani
and Jayakrishnan, 1991) that coordinated information is necessary beyond a certain
market penetration level.

The results further highlight the dynamic nature of the benefits accumulated by a SO
assignment over UE. They suggest that SO is most effective when the traffic network is
moderately to highly congested. In the context of peak period traffic, this implies that
most savings through SO assignment would be achieved not at the beginning nor end of
the peak period, but in a time range in between. When the network is lightly or very
highly congested (oversaturated), an SO assignment does not perform significantly better
than UE. For relatively uncongested traffic situations, SO and UE yield almost identical
solutions.

The results indicate remarkable consistency with previous observational and
simulation results on the relations among network-wide traffic flow variables. In
particular, network-level averages of speed and concentration are related in the familiar
pattern, though this relationship is dependent on the underlying assignment rule and time-
dependent loading patterns. An interesting phenomenon in the dynamics of traffic
network performance was illustrated when examining the time-dependent variation of
speed with concentration, whereby two distinct phases were apparent reflecting the
evolution of the loading process and congestion over the network. This phenomenon is
worthy of additional theoretical as well as observational investigation.

With regard to the effectiveness of real-time information systems, the results
highlighted the high degree of dependence of the potential benefits of uncoordinated
descriptive information strategies on user behavior and the “initial conditions” under
which the network is used (i.e. the flow pattern upon which the information supply
system is superimposed). The meaningful differences between the SO solution and the
UE solution highlighted the potential benefits of coordinated route guidance, particularly
as the overall concentration increases in the network. However, it can be expected that as
congestion approaches saturation conditions, the advantage of SO over UE would tend to
disappear as opportunities for improvement become more limited.
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Of course, to the extent that these results are based on simulations using essentially
the same network topology, they must be treated as primarily illustrative and suggestive
rather than definitive. Considerable additional numerical and observational work is
required for this purpose. However, only now are the necessary methodological tools
available to support such investigations.

Finally, the experiments serve to demonstrate the successful implementation of the
solution concepts developed for dynamic traffic assignment in the ATIS/ATMS context.
The descriptive simulation-assignment framework, DYNASMART, provides a very
useful tool to evaluate traffic patterns under real-time information. The algorithms
developed for SO and UE assignment are also operational, and produce results that
successfully pass engineering judgment reasonability tests. They also demonstrate the
potential of coordination in the provision of route guidance, and provide a practically
tractable basis for the kind of normative traffic assignment capability required by the
ATIS/ATMS controller.
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CHAPTER 5
MULTIPLE USER CLASSES DYNAMIC TRAFFIC ASSIGNMENT

AND REAL-TIME IMPLEMENTATION

The single user class dynamic traffic assignment problem was introduced in the
previous chapter and solved under the ideal full information availability scenario (for the
controller). This chapter extends the single user class problem to include the various user
characteristics and capabilities encountered in the real-world, giving rise to the multiple
user classes dynamic traffic assignment problem. In actual situations, the controller may
not have complete information on origin-destination (O-D) trip desires for the entire
duration of interest. As discussed in the previous chapter, this leads to a partial
information availability scenario. This issue is addressed by using a rolling horizon
approach to implement the multiple user classes algorithm in real-time to realistic
networks.

The first part of this chapter addresses the multiple user classes (MUC) problem. It
introduces the user classes of interest and discusses the problem formulation. The
solution algorithm for this problem is obtained by extending the single user class solution
procedure. The chapter further addresses the rolling horizon approach for quasi real-time
implementation of the solution algorithm for the MUC problem. After discussion of real-
time implementation issues, and description of the rolling horizon approach, the
implementation of this approach to the MUC solution algorithm is illustrated.

THE MULTIPLE USER CLASSES DYNAMIC TRAFFIC ASSIGNMENT PROBLEM

Introduction
A number of factors influence actual system performance under ATIS/ATMS. The

fraction of users with capability for one-way or two-way communication (market
penetration) with a central controller, the various information supply strategies or
assignment rules, and the user response behavior to supplied information are critical
determinants of the particular dynamic assignment strategy in any realistic scenario for
implementing ATIS/ATMS. As noted previously, an ideal scenario from the controller’s
perspective is one where all users are equipped, are provided route guidance instructions
based on a system optimal strategy, and comply fully with the supplied information,
thereby extracting the best possible performance from the system. However, real world
conditions may differ significantly from this optimistic scenario, especially in terms of
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market penetration, the types of information users have access to, and actual user
behavior. Hence, any methodology employed to address the problem in the real-world
implementation context should account for the multiple user classes with varying
characteristics and capabilities in the traffic system.

Even under the most optimistic scenarios for ATIS market penetration over the next
decade, only a fraction of all vehicles in a network are expected to be equipped with in-
vehicle route-guidance systems. Furthermore, equipped vehicles may possess different
capabilities, or have access to different types of information. Drivers may also respond
differently to the supplied information, with some drivers complying with the prescribed
or suggested routes, others making their own decisions based on information on current
or predicted conditions, and yet others behaving in a contrarian manner. Practical
considerations such as these form the basis for classifying users into multiple groups,
each of which has distinct characteristics in the context of implementing ATIS.

The multiple user classes (MUC) dynamic traffic assignment problem addressed
considers the problem faced by a central controller seeking to optimize overall network
performance through the provision of real-time routing information to equipped
motorists, taking into account different user classes in terms of information availability,
information supply strategy, and driver response behavior. In particular, four user classes
are incorporated in the formulation: (1) equipped drivers who follow prescribed system
optimal paths; (2) equipped drivers who follow user optimum routes; (3) equipped drivers
who follow a boundedly-rational switching rule in response to descriptive information on
prevailing conditions (e.g. similar to AUTOGUIDE); and (4) non-equipped drivers who
follow externally specified paths, which may be historically known or solved for
exogenously. Given the time-dependent O-D desires for users in each of these four
classes, the formulation seeks a time-dependent traffic assignment which provides the
number of vehicles of each class on the network links and paths satisfying system-wide
objectives and respective conditions for each class.

Note that our framework also recognizes multiple user classes in terms of traffic
performances characteristics, for example trucks versus passenger cars. However, such
classes do not have direct implications on the solution algorithm, as associated
differences are captured at the level of the traffic simulator. As explained in Chapter 2,
DYNASMART recognizes several vehicle types, and correctly represents their respective
interactions with other vehicle classes. However, such traffic performance characteristics
have no direct implication on the problem formulation or solution procedure, unlike
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commonly used indicators of system performance is the total time spent by vehicles in
the system, and the path travel times conveniently allow evaluation of this indicator.

Constraint (6) states that the dynamic link-path incidence variables are a function of
the assignment. As noted, this fundamental fact expresses the essence of the dynamic
assignment problem. Constraints (7) and (8) are definitional constraints for the number
of vehicles entering and exiting links in the various time intervals. Constraint (9) defines
temporal correctness. Constraint (10) restricts the dynamic incidence variables to take
values of 0 or 1. Constraints (1 l- 13) reflect the conditions characterizing the behavior of
user classes 2, 3 and 4. While it is possible to express constraints (11) as variational
inequalities, constraints (12) would be more cumbersome to write mathematically
because they correspond to rules embedded in the DYNASMART simulator. The authors
have provided elsewhere a mathematically more elaborate formulation but it does not
contribute directly to the problem solution. Constraint (14) represents the non-negativity
requirement.

Solution Algorithm
This section illustrates the simulation-based solution algorithm for the MUC

dynamic assignment problem, obtained by extending the single user class solution
algorithm described in the previous chapter. The DYNASMART simulation model is
used to evaluate any particular assignment pattern and provide the relevant information
necessary to guide the search to the solution satisfying the desired conditions. Figure 42
illustrates the solution algorithm for the MUC time-dependent assignment problem.
Analogous to the algorithmic steps for the single user class assignment problem, the
simulation results from the current iteration provide the basis for a direction finding
mechanism for the search process, through the experienced vehicular trip times and the
associated marginal trip times.

The algorithmic steps of the search process embedded in the algorithm are illustrated
in Figure 43. It consists of an inner loop that incorporates a direction finding mechanism
for the search process for the SO and UE user classes based on the simulation results of
the current iteration. Convergence is sought by obtaining search directions for the SO
(user class 1) and UE (user class 2) components of the solution for the next iteration. The
class of (equipped) users that follow behavioral rules in response to descriptive
information based on current traffic conditions (user class 3 or BR) is not directly
involved in the direction finding mechanism of the search process. The paths of this class
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Rolling Horizon Approach
The basic idea behind the rolling horizon approach is that current events will not be

influenced by events “far” into the future. In the context of the ATIS problem, this is
analogous to stating that vehicles currently assigned will not be influenced by vehicles
assigned “far” into the future as the currently assigned vehicles will probably be out of
the system by that time. The stage length h in Figure 44 depicts that length of time (its
value in actual problems is network specific). The roll period l represents the short
duration into the future for which O-D desires are available with reasonable reliability.
To make an assignment of vehicles to various paths for the current period, the controller
requires knowledge of O-D desires for the rest of the stage length as these O-D desires
are expected to influence current assignments. These O-D desires may be forecasted
based on historical data and current information. The O-D desires beyond the stage
length h are assumed to be zero. The situation is now analogous to the complete
information availability scenario, albeit, only for the duration covered by the stage length
h. The system is solved for optimality only for the duration of the stage length and O-D
desires for the roll period (which are known with certainty) are assigned to the paths
determined. The time frame is now “rolled” forward by a length equal to the roll period
and the above process is repeated till the end of the duration for which ATIS is applied to
the system. Hence, a series of optimizations are performed till the planning horizon is
covered.

The path assignments in each stage are determined for the entire stage, but
implemented for only the roll period (as only the demand for this period is available with
certainty). A number of pertinent questions arise at this point. How far is “far”? What is
the “optimal” stage length h? What is a good value for the roll period l? How accurate
are the forecasted values for future O-D desires? Is there a need for feedback to check if
the assumptions made were realistic? How robust is the solution vis-a-vis the predicted
O-D desires. These questions need to be addressed while implementing the solution
methodology for the rolling horizon framework. The values of the various parameters are
expected to be problem specific; however, appropriate guidelines can be developed
through numerical experiments and test applications. This approach also emphasizes the
need for compatible O-D demand forecasting models.
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l  (roll period)

h (stage length)
l  = The roll period(in number of time steps)
h = The stage length(in number of time steps)
nl = The current stage number

Figure 44. The Rolling Horizon Approach

Real-Time Implementation
Figure 45 illustrates the rolling horizon framework to implement the solution

algorithm for the MUC dynamic assignment problem in real-time. The procedure is as
follows:
1. Obtain the O-D desires for the first roll period, and the forecasted O-D desires for the
rest of the first stage. Obtain the time-dependent historical paths (paths obtained from
database) for equipped user classes for each assignment time step in the first stage, as
well as the paths to be assigned to the unequipped users.
2. Perform a complete run of the MUC algorithm till convergence for the O-D desires of
the current stage. Make an on-line assignment of the O-D desires for the current roll
period to paths to their destinations. If the end of the time horizon for which an ATIS is
desired is reached, stop. Otherwise, continue (go to step 3).
3. Shift the current stage by a length of time equal to the roll period to obtain the next
stage. The next stage now becomes the current stage.
4. Update the origins and positions of all vehicles from the previous stage that did not
reach their destinations by the end of that stage.
5. Update the O-D matrix for the current stage based on O-D desires for the current roll
period, forecasts for the O-D desires for the rest of the current stage, and O-D desires
from the previous stage who have not yet reached their final destinations. If re-routing of
previously assigned vehicles is not desired, treat vehicles already in the network as
members of class 4, who follow pre-specified paths (in this case obtained from the
previous stage). If re-routing is desired, keep already assigned vehicles in their respective
classes and update their origin to the current location (or appropriate downstream node).
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6. Obtain the initial paths for the current stage based on historical data and the link travel
time experience from the previous stage. Go to step 2.

In the on-line implementation of the procedure, there are three possible scenarios
regarding the relative magnitudes of actual and forecast O-D trip desires. The ideal case
is when the forecasts are accurate for the entire stage under consideration. The vehicle
paths obtained in the solution for the roll period are then as good as one could expect
them, unless changes take place in the network characteristics, such as a capacity-
reducing accident (in which case the problem should be re-solved on-line to determine
new paths for equipped classes in conjunction with applicable traffic management
strategies).

However, forecasts may also either underestimate or overestimate actual demand,
corresponding to the second and third scenarios respectively. In both cases, the quality of
the paths determined for vehicles generated in the roll period may suffer, though this is
inherent in any decision strategy operating under uncertain conditions. The robustness of
the solution vis-a-vis the quality of the O-D forecasts, and the implications for the various
parameters of the implementation scheme (particularly the lengths of the roll period
solution stage and O-D prediction horizons), are undoubtedly the most important issues
that need to be addressed in future numerical and observational research. From the
standpoint of the actual implementation of the procedure, both underpredication and
over-prediction scenarios can be accommodated. In the former (underprediction), there
will be fewer actual vehicles than incorporated in the solution. This does not pose any
implementation difficulty on-line as all actual O-D trip desires will have paths available
to their respective destinations. In the latter scenario (over-prediction), the “additional”
actual vehicles will be assigned to paths selected randomly from the optimal path set for
their corresponding class. Since user class 3 vehicles make their own decisions in real-
time, the rolling horizon procedure serves only the purpose of determining good “initial”
paths for them. Finally, user class 4 vehicles do not receive paths from the central
controller.
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CHAPTER 6
THE PATH PROCESSING COMPONENT OF DYNASMART

This chapter describes the algorithmic elements of the path processing component of
DYNASMART, namely the k-shortest path computation and update procedures. The time-
dependent least time and least cost algorithms used in conjunction with the time-dependent
system optimal and user equilibrium assignment procedures described in Chapters 4 and 5
are discussed in the next chapter. This chapter is broadly divided in four sections. The
first is an extensive introduction and literature survey section pertaining to k-shortest path
algorithms and implementation issues. Next, the k-shortest path and the update path
algorithms for a single user class, as implemented in DYNASMART, are analyzed; efficient
implementations are discussed, and comparative results are presented for the adopted as
well as for alternative designs. The third section extends the previous methodologies to the
multiple user classes case. In the final section, “update” versus “calculate” strategies are
assessed.

INTRODUCTION AND LITERATURE REVIEW
The need to calculate more than one shortest path (between a given origin and

destination) in DYNASMART arises for several reasons including: (1) the need to model
vehicle movement patterns under information, (2) the need to give alternative paths to
drivers, (3) the capability to generate and represent a realistic choice set for drivers in
connection with the user decisions component and finally (4) the need to improve the
computational efficiency of the overall path computation component by combining update
and calculate strategies.

An extensive literature review was carried out to identify the algorithms that could
provide best performance in the DYNASMART environment. For this purpose three
algorithms were designed, implemented and actually coded. The algorithms were tested on
real street and random networks, and the best of them is included in DYNASMART. The
computational results are discussed in the second section.

Terminology and Notation
This section contains formal definitions of the terms commonly used in the shortest

path literature. Most of the notation and definitions follow Dial et al’s (Dial, 1978). A
directed network or simply a network G(N,A) consists of a finite set of nodes N and a
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deviation from the shortest path, any path that coincides with the shortest path from the
origin up to some node j then deviates directly to some node k, then reaches the destination
node via the shortest path from k. If all such deviations are computed between two nodes,
then the second best path can be determined as the minimum among the set of deviation
paths. The algorithm first calculates the shortest path tree from all nodes to a given
destination. Next, the deviations from the second path are explored and the third best path
is noted among the deviations of the second best path and those remaining in the first
deviation set. If the average node has d outgoing links, and the average shortest path
contains m links, an average problem requires md steps, beyond those for calculating the
shortest path tree, to find the second shortest path. However, the subsequent paths require
significantly more computation time to find than the first one.

Dreyfus suggested some modifications that appear to increase the efficiency of this
algorithm, but no implementation has been reported so far in the literature. Fox (1973)
studied this Dreyfus-Hoffman-Pavley method and proposed data structures for the lists the
algorithm needs to keep. Specifically he proposed a heap structure for the list that keeps all
the sub-optimal paths for every node. This structure is a binary tree that always keeps its
least element in the first position, and requires log2N operations to insert and delete an
element in a N-element list. This structure works better when a large number of paths is
sought, k>10logN. Fox considers also a perturbation scheme that safely breaks ties.
Specifically, he proposes picking a small number b and then generating uniform random
numbers in the interval (O,b), and adding a distinct one to each arc cost. This indeed
ensures that no ties or zero cost loops will result during the process.

Another early algorithm that is worth noting has been proposed by Pollack (1961).
The algorithm can be applied when k is small, and appears especially competitive if only
two paths are sought. His method can be described as follows:
Given the shortest path from node i to node j, the length (cost) of each link along this path
is set, in turn, to infinity and the shortest path for the resulting network is found. The best
of these paths then is the second best path. An interesting feature of this scheme is that all
the shortest path calculations, each corresponding to a particular arc set to infinity, are
completely independent of each other. This makes this approach a possible candidate for
massively parallel computations. Also this procedure could be easily transformed so that
time-dependent k-shortest paths can be calculated for a given OD pair.

Another significant contribution that has attracted considerable attention is a paper by
Bellman and Kalaba (1960), who proposed an entirely different procedure. If hki is the
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holds the exact position of its elements in the structure. Moreover, this structure always
holds the least label node in the first position of the top bucket, which is advantageous for
label setting algorithms. The most costly operation for this structure is the node insertion,
and therefore its efficiency depends on the number of operations associated with the node
insertion. This is in turn depends on the bucket size, the number of buckets, and the
variance of the arc cost values. Extensive description of this data structure can be found in
Aho et al. (1983). This implementation can be coded using one-dimension array pointers,
each pointing to the first node of a linked list. The linked list can be represented by an Nx2
array. This scheme has been implemented by Shier for the k-shortest path case with very
encouraging results.

Gilsinn and Witzall (1973) were among the first to test the above scheme for a wide
range of networks, and compare it with label correcting schemes. They implemented and
coded three label correcting and five label setting algorithms, and performed a number of
comparison tests on random networks. They concluded that Dial’s label setting approach
was performing better than their label correcting designs for most of the networks
considered. However, none of the label correcting designs that they coded would be
considered efficient today.

Van Vliet (1978) also implemented Dial’s algorithm along with four other designs,
including one label setting algorithm with a heap data structure for the SE list, and a label
correcting with Pape-D’Esopo’s double ended queue. Both of these structures are
employed in this study for the k-shortest path case. It is worth noting his conclusions
about the four factors that affect the efficiency of such structures, namely: network size,
mean link cost, network shape and ratio of number of links to number of nodes.

Efficient data structure designs for label correcting SE list has been the subject of
extensive research after the introduction of the algorithm by Moore. Pape (1974),  Golden
(1976), Pallotino (1984), Pallotino and Gal10 (1986) and Dial et al. (1978) among others
investigated a number of designs, from simple linked queues, circular lists, stacks, double
linked lists, up to double two ended queues and double ended queues. Almost all the
mentioned studies performed comparison tests among a number of different structures.
Most of these results indicated that the double ended queue (deque) tends to perform better
for large sparse networks. This structure is discussed extensively in the implementation
section of this chapter.

Finally, the newest family of shortest path algorithms, the PSP algorithms, introduced
by Glover et al are implemented in Glover (1985). For the single path case, two simple
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lists are used without any internal arrangement. The algorithm examines the nodes from
the first list in a FIFO fashion. When this list is empty the second list is scanned
sequentially from the beginning to the end and the nodes with labels less than a threshold
value are inserted at the end of the first list. This simple structure has been proposed and
implemented by Glover et al (1985). Transformation of this structure for the k-shortest
path case is analyzed and implemented in this study for the first time.

Extensive implementations of k-shortest path schemes, both label setting and
correcting, were studied and proposed by Shier (1979). The basic scheme for all of them
was described in the algorithms review section. A k-vector label structure was used for
every node. Five designs were implemented and tested. The first is a basic label correcting
algorithm (BLC), a scheme that scans every node at every iteration; this scheme proved to
be very inefficient. Next is an alteration flag (AF) algorithm, a simple array structure,
called flag, that distinguishes nodes as eligible or not eligible for scanning. This scheme
performed satisfactorily for small sparse networks, but not so well for larger or denser
networks. The third approach tested is a variant of the BLC algorithm, a double sweep
scheme that alternates forward and backward iterations until no improvement in any of the
k-vectors is possible. The last label correcting algorithm tested uses a simple FIFO list for
the SE list, implemented as a circular list with two pointers, one to the top and the other to
the rail of the list. Nodes are inserted at the tail and deleted from the top of the list. A one-
dimension array of size N, similar to that used in the AF algorithm is employed to detect
whether a node is already in the list. These four label correcting schemes were compared to
a rather efficient label setting design based on Gilsinn and Witzgall’s (1973)
implementation of Dial’s algorithm. In Shier’s modification, a k-vector label is kept for
every node. Recognizing that the components of each vector arc kept in strictly increasing
order by themselves, since the already scanned (permanent) labels will always precede the
unscanned (temporary), an identifier array, similar to that of SL method, is used to detect if
a node is already in the bucket structure. However, the author did not describe the
implementation details of the double linked list of each bucket. The comparative tests
performed showed superiority of the last label setting implementation. This should have
been expected because the particular implementation scheme of the label setting procedure
is highly efficient and advanced, unlike the label correcting implementations tested.
Designs using deque data structures would have given better results.

The implementations developed for DYNASMART and the tests performed to evaluate
alternative designs have benefited from Shier’s work. All three schemes implemented here
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are expansions of the simple shortest path case. However, unlike previous
implementations, this study has gone beyond simple modifications of single path cases to
take advantage of the special structure of the k-path case, resulting in more efficient
designs. The specific details of these procedures are given in the next two sections.

SINGLE USER CLASS
Analysis and Design of the k-Shortest Path Algorithm

 In this research we compare three basic k-shortest path schemes: a label setting, a label
correcting and a hybrid scheme. The label setting scheme employs a heap structure for the
scan eligible (SE) list. This scheme had been implemented previously in an earlier version
of DYNASMART (Jaykrishnan, 1992). The structure tested here differs slightly from
Jaykrishnan’s implementation in some details that lead to better execution times for some
classes of networks. In addition, the heap structure has been regenerated to produce
programs coded by the same programmer, so that objective comparisons can be made.
Moreover, the heap structure is one of the most efficient designs for label setting
algorithms, and therefore constitutes the best choice for testing this class of algorithms.
The second approach tested is a label correcting algorithm with double ended queue design
for the scan eligible list. Different possible strategies that take advantage of the k-vector
structure of the labels are evaluated. In depth analysis of the mechanisms of the label
correcting approach was also performed. Third, a modification of Glover’s original PSP
algorithm for the k-shortest path problem was designed and implemented.

In this report, only the label correcting algorithm is extensively discussed, because its
performance was found to be superior to the other two, and is as such included in the
current version of DYNASMART. In what follows, it is assumed (with no loss of
generality) that node 1 is the given origin node and that the k-shortest path lengths (times,
costs) to all nodes of the network are sought. The basic steps used by a label correcting
algorithm are outlined below. Explanation of the basic terminology used here can be found
in the first section. No label is permanently set’ by this approach before the algorithm
terminates.

Label Correcting K-Shortest Path Algorithm
Step 1: Initialize the labels of all the nodes in the network with an initial upper bound.

-1That is, assign a k-vector hj=(hJ ,LJ-2,. . .,hjk) to every node j, where the components of
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In the next section, a method is proposed to dramatically improve the effectiveness of
any label correcting approach for k-shortest path problems. This method, which can be
applied with any SE list structure, takes advantage of the fact that k-vector labels are
needed instead of just one label. The SE list in this research is modeled as a double ended
queue (deque), although other structures are also investigated. The implementation details
of this structure are given in the next section. Some theoretical considerations are
discussed in this section.

Front Insertion .
> Deque Back Insertion

4

Deletion

Figure 47. Double Ended Queue (Deque)

As shown in Figure 47, the deque is a simple linked list where the insertion can be
done at both ends, while deletion takes place only from the front end. The deque design has
been reported to outperform others for label correcting algorithms for ordinary (single)
shortest path problems. However, no implementation for the k-shortest path case has been
reported.

Implementation of the K-Shortest Path Algorithm
Network and Path Representation

A network may be represented in a computer in several ways, and the manner in which
it is represented directly affects the performance of algorithms applied to the network. The
most popular way of storing a network is to use a linked list structure. In this method, all
the arcs that begin at the same node are stored together and each is represented by recording
only its ending node and length. A pointer is then kept for each node (heading) to indicate
the block of computer memory locations for the arcs beginning at this node. The set of arcs
emanating from node i is called the forward star of node i. If the nodes are denoted
sequentially from 1 to N and the arcs are stored consecutively in memory such that the arcs
in the forward star of node i appear immediately after the arcs in the forward star of node i-
1, then this method, called the forward star form, requires only N+2A units of memory.
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Throughout this section we assume that the network is represented in forward star form.
The forward star structure for the example in Chapter 2 is shown in Figure 48.

A
B
C
D
E

3
10
8

2
12
2
6
4
2
4

Figure 48. Forward Star Network Representation

A similar structure that may sometimes be more appropriate is a backward star form.
It has an analogous structure, with the nodes that precede a node recorded in its backward
star. This form is particularly useful if the shortest path tree is rooted at the destination.

Another related representation issue is the storage of the resulting k-shortest paths. An
efficient way is to use pointers to the previous node (along the path). This is used for the
ordinary shortest path case and can be extended to the k-path case. For each element of the
k-vector label a two-dimension pointer array is defined. The first dimension holds the
previous node in the path and the second dimension the rank (k) of the label of this node.
This is shown diagrammatically in Figure 49.
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A p k

E p k

Figure 49. Path Storage Example

Implementation of the Algorithm
In a previous section we introduced the basic scheme of a label correcting algorithm

and proposed a double ended queue (deque) structure for the scan eligible (SE) list. The
objective here is to minimize the number of reentries of a node in the list.

The deque structure has been implemented for the ordinary path case with very good
results for a broad class of networks, including transportation networks. It is easy to
implement in any general purpose high level language, and does not require complicated
structures or pointers. In order to implement it, one needs to specify, for every node
updated by the algorithm, if the node is currently in the SE list, or if not, whether it has
been in the list in the past. Depending on the answer, the node is inserted from a different
end in the deque.

Furthermore, some way of representation is needed for the internal arrangement of the
nodes in the deque so that the basic insertion and deletion operations can be accomplished.
Pallotino and Gal10 (Pallotino, 1984; Gal10 and Pallotino, 1988) have extensively studied
different SE list representations, including the deque, and proposed a one-dimension array
of size N that takes the following values:

152



Deque(i) =

  0

-1

j

oo

if the node is not currently in the Deque
and it has never been in there before.

if the node is not currently in the Deque but
it has been in there before.

where j is the next node in the Deque, if it is
currently in the deque and it is not the last node in the
structure.

if it is the last node in the Deque.

In addition to these, two pointers must be used for the deque: one pointing to the first
element of the deque (FirstDeque) and one at the last (LastDeque).

Next we define the following basic operations of the deque: creation, insertion,
deletion. The creation is an initialization procedure that must take place once at the
beginning of the program. It assigns the values: Deque(i)=O V iE N-{ 1} and
Deque( 1)=9999999. The deletion of a node from the deque consists of identifying the first
element of the deque, and then deleting it. This is accomplished using the FirstDeque
pointer to pick the first element and then to move this pointer to the next node by assigning:

FirstDeque=Deque(FirstDeque).
Finally, the insertion operation inputs a node in the deque. If the deque is empty, then

the inserted node is named first node and last node at the same time and its Deque(Node)
points to infinity. If the list is not empty, then the input node is inserted at the beginning or
at the end of the structure depending on its Deque(.) label value. Both operations involve
two steps:

If Deque(Node)=O then
Deque(Node)=FirstDeque
FirstDeque=Node

Else If Deque(Node)=-  1 then
Deque(LastDeque)=Node
LastDeque=Node
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A node is inserted in the deque because its k-vector label has been improved. When
we delete this node from the deque to scan it, we need to know the specific label
component that has been improved from this node’s label vector, so that it can be used to
update subsequent nodes. Therefore, when a node is inserted in the deque, it must carry its
label value with it. This is accomplished in the label setting case with an ID pointer to this
specific label in the node’s label vector. A similar concept could also be used in the label
correcting case. However, it is not important to use just one variable as an ID for the
deque, because no internal arrangements are taking place inside it. More than one
identification variable (or even part of the k-vector label) can be assigned to the node
entering the deque. Another difference with the heap (in the label setting case) is that the
latter is intended to support a scheme that must always scan the minimum label node.
Therefore the elements in the heap are arranged according to their corresponding label-
components. The same node may occupy several slots in the heap if more than one of its
labels have been improved. Each instance (of the same node) is scanned separately
according to the corresponding label. This can be avoided in the label correcting case.
Each node in the SE list can have more than one label associated with it, instead of multiple
instances of the same node with different labels. When a node is deleted and scanned, al l
its labels can be scanned simultaneously. This leads to substantial savings in the execution
time of the algorithm. This design is shown diagrammatically in Figure 50.

This design is not a simple extension of the one for the ordinary shortest path. It takes
advantage of the fact that k paths are sought and simultaneously calculates as many of these
paths as possible. It does not depend on the specific SE list structure. The same scheme
was also applied in conjunction with Glover’s PSP algorithm.

Another implementation aspect of this approach is the searching-sorting of the k-vector
label. Every time a new label is calculated for a node, it must be compared to the maximum
component of the k-vector label for this node. If greater than this maximum value, the label
is rejected; otherwise it must be included in the label structure and properly placed
depending on its value. In the label setting approach this is not a problem since the label
setting property guarantees that a scanned label is always the minimum. But for a label
correcting implementation this is an important and time consuming task. There are several
ways to sort the incoming elements of the label structure: from simple naive sequential
comparisons, to binary trees and strategies based on Fibonacci numbers. The fact that the
number of desired labels is in the order of at most 10 led us to reject “advanced” structures
with high associated overhead cost (Aho et al., 1983), and to use a simple linked list
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This procedure was selected among several other alternatives. We decided to have the
labels in descending order after noting that there is a higher probability for a smaller label to
be produced earlier, because in general paths with more arcs tend to be longer.

Next, we summarize the entire algorithm using the implementation approaches
discussed:
Step I: Initialize all the label vectors to 999999, except the first label of the origin node,
which takes value 0. Initialize the first label pointer of the origin node to 1.
Step 2: Create the deque, and insert node 1 into it, with associated unscanned label 0.
Initialize all the Deque(i)  pointers to value 0 except for the origin node; its Deque(.) pointer
takes the value 999999.
Step 3: Delete from the deque the first node and name it CurrentNode.  If the FirstDeque
points to 999999, then go to step 5. For every label associated with this node scan all
neighbor nodes and update their labels as follows:

Calculate the sum hmi+Cij , where i is the CurrentNode, j is a neighbor node, and
hmi is an unscanned label of node i. If this sum is less than the largest label of node j,
then include this label into the label structure of j.

If node j is already in the deque, add this new label into its label structure as an unscanned
one. Otherwise, insert the node in the deque with the new label unscanned.
Step 4: Go to step 3.
Step 5: Terminate the process. The k-vector label of every node contains the k-shortest
paths from the origin node to this node.

Computational Testing and Results
The results of computational tests to evaluate and compare the methods implemented

are discussed in this section. A number of randomly generated shortest path problems
were solved, along with a real transportation network, using the same computer (CRAY Y-
MP/8 supercomputer) and the same compiler (UNICOS CFI77 FORTRAN). All the
codes were implemented by the same programmer and no attempt was made to take
advantage of any of the advanced hardware features of CRAY at this stage. Each test
problem was run 50 times using different origin nodes randomly selected but consistently
used with every code executed on that network. The average execution time for the 50 runs
is reported in each case. Every effort was made towards efficient code design.
Subroutines were unified into the main program for the test runs so that no time is spent for
subroutine calls.
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The test networks consist of three sets of random networks and one real large urban
street network, that of the core area of Austin, TX, consisting of 625 nodes and 1742 arcs.
The random networks were generated using a special purpose random network generator
(Ziliaskopoulos, 1992).

The following two tables present execution times (in CPU milliseconds) for a series of
computational experiments designed to study the relative efficiencies of the three tested
schemes: LC for label correcting with deque list structure, LS for label setting with heap
structure, and PSP for modified version of Glover’s partioning algorithm with deque
structure.

Table 21. Corn utational Results in CPU Milliseconds for k=5

100N 500N 1 0 0 0 N 1500N 2500 N 625 N
250 A 1250 A 2550 A 4500 A 7500 A 1742 A

Lc 1.31 9.88 30.23 45.85 83.18 10.15
LS 5.67 40.80 94.7 1 160.46 294.00 42.06
PSP 2.07 10.76 31.43 38.3 1 57.91 10.95
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Table 22. Computational Results in CPU Milliseconds for k=10

100N 500N 1 0 0 0 N  1500 N 2500 N 625 N
250 A 1250 A 2550 A 4500 A 7500 A 1742 A

Lc 3.66 25.13 84.60 120.78 224.3 1 23.82

LS 12.7 88.33 2 10.72 345.04 642.5 92.55
PSP 3.11 29.41 83.72 94.77 182.15 23.77

Table 23. Computational Results in CPU Milliseconds for k=15

100N 500N 1 0 0 0 N  1500 N 2500 N 625 N
250 A 1250 A 2550 A 4500 A 7500 A 1742 A

LC 7.26 47.72 167.89 231.98 443.56 44.85
LS 21.05 176.26 435.91 752.80 1196.58 157.45

PSP 8.13 46.95 100.32 117.82 367.46 48.98 ,

Table 24. Means and Standard Deviations for k=5

100N 500N 1 0 0 0 N  1500 N 2500 N 625 N
250 A 1250 A 2550 A 4500 A 7500 A 1742 A
(mean (mean (mean (mean (mean (mean
std) std) std) std) std) std)

LC 1.31 9.88 30.23 45.85 83.18 10.15
0.2033 1.3742 3.1011 7.0487 8.3540 0.3867

LS 5.67 40.80 94.7 1 160.46 294.00 42.06
0.032 1 0.0985 0.2569 0.9856 2.0263 0.1046

PSP 2.07 10.76 31.43 38.31 57.91 10.95
0.5213 2.0112 3.8834 6.3464 11.453 1 0.6677

In Table 24, the standard deviations are given for the same test set and for k=5. These
standard deviations have been calculated from 50 different runs using the same destinations
as the data in Table 21. In this case, the individual execution times from every origin have
been recorded so that the standard deviations can be calculated.

The first and most important conclusion from the previous analysis is that, in general,
the label correcting algorithm performs better than all the other implementations for medium
and small size networks. However, the partitioning shortest path algorithm is superior for
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larger networks. This can be attributed to the fact that the PSP algorithm performs less
efficient scanning of the list structure than the LC algorithm for small networks.

Another observation is that the execution times for the PSP algorithm exhibit higher
variance than the others, as seen in Table 24. The label setting algorithm has the lowest
variance in all cases. This can be explained by the fact that the number of iterations for the
LS implementation is almost constant and independent of the origin node (kN iterations),
and iterations do not differ greatly from each other, unlike the other two codes for which
the composition of the SE list is heavily dependent on the origin node.

Update Path Algorithm
The path processing component is by far the most computationally expensive part of

DYNASMART. This is the primary motive for studying alternative schemes that can
accurately compute paths faster. The scheme presented in this section was introduced in
Chapter 2. It consists of updating the already computed paths every simulation step (or
small number of steps),while the k-shortest path algorithm computes the paths “from
scratch” at specified intervals. This approach might miss a path that has become a k-best
path at some point between two consecutive computations of the paths; however, it is
unlikely to miss the best two or three paths. The trade-offs between updating versus
calculating paths are discussed in a later section. In this section, an efficient scheme to
update an existing k-shortest path tree with new travel times is presented. Two alternative
update path schemes were investigated for this study. The first was based on a list update
design that can vectorize readily but includes many computationally redundant parts. The
second approach uses a compact tree update scheme that does not vectorize well because of
its highly sequential nature; however, it avoids redundant computations and ultimately
outperforms the first approach. The tree based approach is discussed in the next section.

This algorithm is based on a rather straightforward tree traversal procedure that
sequentially updates the nodes with new labels moving in a depth-first fashion down the k-
shortest path tree. The tree traversal procedure does not actually matter as long as a node-
path is updated after its predecessor node-path has been updated. This is guaranteed by
assigning a serial number (PriorityNo) to each node-path so that if a node on path m of
node i points to node j and path 1, then PriorityNo(i,m)>PriorityNo(j,l). In order to
achieve this, a procedure was built (BuildPriorityTree()) to sequentially trace, for every
node-path, its path to the destination node or to an already traced node-path. The steps of
the BuildPriorityTree() procedure follow:
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BuildPriorityTree()  Procedure
Step I. Assign priority 1 for the first path (k=l) of the destination node.
Step 2. For every node and path (i,m) in the network other than the first path of the
destination node run Step 3. If all the node-paths have been scanned, then go to Step 5.
Step 3. Check if node-path (i,m) has already been assigned a serial number. If assigned,
then go to step 4 and move to the next node-path; otherwise, trace the next node-path (j,l)
that follows this node-path along its path to the destination node, save (i,m) in sequential
array PriorityPointer(),  name (j,l) current node-path and go to Step 3.
Step 4. If the PriorityPointer() array is empty go to Step 3; otherwise sequentially assign to
every node-path in the PriorityPointer() a serial number increasing from the last entry to the
first and go to Step 2.
Step 5. Terminate.
When the procedure terminates, a unique serial number has been assigned to every node-
path.

The node-paths are updated iteratively starting from the one with priority number two
up to the node-path with priority number Nk. The BuildPriorityTree()  procedure
guarantees that when the label for the node-path (i,m) is computed by adding to the label of
its predecessor node-path (j,l) the new travel time of arc (i,j), the label of (j,l) has been
updated. The final step of the update path algorithm is a sorting subroutine that sorts the
updated path in increasing order of label size. Next the overall update path algorithm is
summarized.

Update Path Algorithm
Step 1. Call the procedure BuiIdPriorityTree()
Step 2. For Priority Number ip=2 to Nk, repeat the following operation:
Set the label of the node-path with priority number ip equal to the sum of the label of the
predecessor node-path and the new travel time of the arc that connects the two labels.
Step 3. For every node sort the labels of the paths.
Step 4. Terminate the algorithm.

Implementation of the algorithm is straightforward. The computational performance of
the proposed update path algorithm is reported for different size random networks and the
core street network of Austin, TX (625N, 1742A) in Table 25.
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Table 25. Computational Results in CPU Milliseconds for k=10

100 N 500N 1 0 0 0 N  1500 N 2500 N 625 N
1250 A 1250 A 2550 A 4500 A 7500 A 1742 A

1.98 7.89 23.81 34.42 63.17 7.03

The results in Table 25 demonstrate the considerably lower computational
requirements of the update path scheme compared to all the k-shortest path algorithms. The
update approach performs better for larger networks because the effect of an initial start-up
cost is reduced for larger networks. Designs that combine update and calculate algorithms
are investigated in this chapter’s last section.

Parallel Design of Path Processing Algorithms
Application of parallel programming concepts to large network problems has attracted

considerable attention (Mahmassani, 1990; Zenios,1991)  mainly because of its potential to
improve computational times for large problems. In this section, an assessment of the
capabilities of parallel computers to speed-up path processing computations is made and
different possible alternative designs are evaluated. A brief description of relevant parallel
programming concepts is included first.

Some Concepts of Parallel Programming
The schemes examined here are designed with a multiple instructions multiple data

(MIMD) machine in mind. CRAY Y-MP/8 belong to this category, with 8 CPU’s and
shared memory communication environment (CRAY, 1989). A number of parallel
processing capabilities are available on this machine such as macrotasking, microtasking,
autotasking, vectorization, and I/O subsystem parallelization.

Only macrotasking is studied in this application because it is a feature commonly
available on every parallel machine. Vectorized designs are discussed in Chapter 7 in
conjunction with the implementation of the time-dependent shortest path algorithm.
Macrotasking is a form of multitasking that uses multiple processors in a FORTRAN
program at the subroutine level. The whole operation is controlled by the programmer who
is responsible to explicitly partition the program into tasks, each of which is eligible to run
on a CPU. Typically, these tasks may take the form of different subroutines that can be
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executed concurrently, or they can involve separate invocations of the same subroutine. A
task is a piece of code and data that can be scheduled for execution on a CPU.

The basic problem that arises in parallel programming is computational and storage
dependence among the tasks. Computational dependence includes data dependence and
control dependence. Data dependence is an ordering relationship between statements that
use or produce the same data, while control dependence refers to the situation in which the
order of execution of statements cannot be determined a priori. This happens when
conditional statements (IF commands) are encountered in the program. Finally, storage
dependence has to do with the independence of the workspace. Each parallel computational
task has access to variables, and the fetching and storing of all the variables in one task
must not interfere with that in another task

Parallel k-Shortest  Path and Update  Path Algorithm
Parallelism was exploited in this study at two levels: tree rooted at single destination

(or origin), and multiple destinations (origins). At the single destination level, the
algorithm is executed jointly on several CPU’s; at the multiple destination level, each
destination root node is assigned to one processor that executes independently a copy of the
algorithm. The first approach did not perform satisfactorily, primarily because of the
characteristics of the CRAY Y-MP/8 which entail considerable overhead for several
processors to collaborate on finding the shortest path tree for a single root node. Some
design details are briefly discussed. The second design performed extremely well. Its
design and implementation details are discussed in this section and some computational
results are given.

Initially, the network structure and the travel time data are read sequentially by a single
processor and stored in the common memory. Next the variables and parameters are
initialized by a single processor, although they could be initialized in parallel, because this
step takes only a very small portion of the total computation time. A copy of the path
computation iterative procedure is called once by each processor and runs completely
independently. Every copy maintains its own SE list and k-shortest tree which are stored
in the private memory space of each processor. The only time the shared memory is
accessed is when travel time data is needed. In theory, this step does not interfere with the
other processors because the data are accessed in read-only fashion. However, in practice,
this can create memory contention, especially if more than one processor is trying to access
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the same piece of data simultaneously. The steps of the above scheme are described next.
Two library functions of CRAY are employed to implement this approach:
TskStart(): assigns a subroutine S to a processor P,
TskWait():  waits for a processor P to become idle.

Parallel k-Shortest Path Algorithm for Multiple Destinations
Step I. Read network structure and travel time data and initialize the parameters and
variables.
Step 2. Do Step 3 for ip=l to NumberOfProcessors- 1.
Step 3. Let Destination(ip) to be the current destination;
Call TskStart to assign the k-shortest path subroutine to processor ip.
Step 4. Call TskStart to assign the k-shortest path subroutine to processor
Num berOfP rocessors.
Step 5. Call TskWait  and wait for all NumberOfProcessors processors; Terminate.

The k-shortest path subroutine has the same structure as the sequential scheme described in
a previous section. An identical design is used for the update path algorithm. The only
difference is that the update path procedure is called instead of the k-shortest path
procedure.

The above scheme was coded and tested on street-like networks of varying sizes. The
results were extremely stable and insensitive to the size of the network for the networks of
Table 22. Four processors were utilized in a dedicated environment yielding speed-up of
approximately 3.6 in almost every test. Table 26 shows the expected speed-up of a similar
architecture with varying number of processors according to Amdahl’s Law (CRAY,
1989).
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Table 26. Theoretical Speedup for the Parallel k-Shortest Path Algorithm

Processors 1 4 8 16 64 Infinity
Speedup 1 3.6 6.5 10.5 19 27

In contrast to the proposed design, parallelization at the level of the individual
algorithm (for a single destination root node) did not perform well. The parallelization was
applied on the deque operations. Specifically, each processor reaches the deque and deletes
the first node of the deque. Next, it scans the deleted node by reaching its neighbor nodes.
If the labels of any of the reached nodes is improved, then these nodes are inserted in the
deque. In order for this scheme to work, however, the deque must be protected from
simultaneous access by two or more processors that could destroy its structure and result in
wrong results. Protecting the deque turns out to be very expensive computationally
because it is activated and de-activated every single scanning iteration, thereby incurring
significant overhead. Nevertheless, had the library of parallel functions of CRAY been
cheaper, this scheme would perform fairly. Moreover, it must be noted that in the above
scheme we did not consider intersection movements and time-dependency. If these factors
are considered the size of the task (grain) is expected to increase so that parallelization at the
level of a single destination would be expected to perform satisfactorily.

MULTIPLE USER CLASSES
K-Shortest Path Algorithm : Analysis and Implementation.

Two alternative schemes are considered for computing paths on networks with
multiple user classes. The first approach is a simple extension of the single user class
design. It successively computes the paths using multiple realizations of the network (one
for each user class) with different arc costs (for the corresponding class) for every
realization. The computational complexity and memory requirements of this scheme are
direct multiples of those for a single user class. This design was challenged by another
more advanced scheme that is more efficient in terms or memory and computational time.
This scheme combines the k-shortest path and the update path algorithms presented in an
earlier section in an intelligent way to create upper bounds for one user class using the
paths computed for the previous class. Moreover, computing k paths for every user class
will result in mk total paths for every node. Most of these paths are expected to be the
same or overlap to a great extent, i.e., the mth best path for one user could be the 1th best
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path for another user for the same origin-destination pair. This redundancy is avoided in
the design proposed in this section. In order to avoid the computation and storage of
redundant paths we combined a calculate/update scheme that is first described in words and
then outlined formally in algorithmic steps.

Using the k-shortest path algorithm presented in the previous section (for a single user
class), we compute kinitial paths for the first user class without using upper bounds. Next
we use the Update Path0 algorithm presented previously and update the stored paths for
the first class using the arc costs of the second user class. These paths are upper bounds to
the actual shortest paths for the second user class; by using them in computing the shortest
paths for the second user class, the computation time can be dramatically improved. The
improvement results not only from the paths of the previous user class being sharp upper
bounds, but also because some of the paths actually do not change at all. They may have a
different rank for the new user class but they are physically the same. If a path remains the
same, then its shortest path label equals the upper bound computed in the Update Path
subroutine and can therefore be easily detected. Suppose k2 paths are needed for the
second user class, and kl for the first user class. The kl least paths from the kinitial paths
that we have computed are marked as permanent and will not be deleted from the structure
even if they are not among the k2 paths for the second user. If any of these paths happen
to be among the k2 paths for the second user class, then they are marked as such. If the
non-similar paths are greater than (kinitial-kl) then we augment the path structure. The
above reasoning applies to the remaining user classes and is summarized in the following
algorithm:

K-Shortest Path Agorithm for Multiple User Classes
Step 1. Compute kinitial paths for the first user class using the k-shortest path algorithm
for a single user class.
Step 2. Repeat Steps 3 to 5 for CurrentUser=2 to Number of Users.
Step 3. Call the Update Path algorithm using as new costs the arc costs for the
CurrentUser  class.
Step 4. Compute kCurrentUserr paths using the k-shortest path algorithm with upper
bounds, stated next.
Step 5. Call the BuildPriorityTree  procedure.
Step 6. Update the common k-path structure for every user class and destination.
Step 7. Terminate
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The implementation of the k-shortest path algorithm for multiple user classes does not
differ conceptually from the ordinary algorithm. The individual pieces of the algorithm
follow the same guidelines described previously.

Update Path Algorithm for Multiple User Classes
The update path algorithm for the multiple user classes case is exactly the same as that

for a single class. Moreover, it is used internally by the k-shortest path algorithm for
multiple user classes as explained in the previous section. In addition, it is used to update
the k-shortest paths every simulation step of DYNASMART in the same way as in the
single user case. The only difference is that more paths are typically updated (K-paths) in
the multiple class case than in the single class case.

UPDATE/CALCULATE COMBINATION APPROACHES
In this section, we evaluate the strategy of combining calculate and update approaches

to speed up the path processing computations in DYNASMART. The objective is to
specify the “optimum” number of time intervals that the paths are updated between two
successive computations. In Table 27, the average computation time for one run for the k-
shortest path (label correcting) and update algorithms are given together for comparison. In
Figure 52 the computational times are sketched for various scenarios with increasing
number of update time intervals, i.e. less frequent computations.

Table 27. Computational Results in CPU Milliseconds for k=10 for
Calculate and Update Algorithms

100N 500N 1 0 0 0 N  1500 N 2500 N 625 N
250 A 1250 A 2550 A 4500 A 7500 A 1742 A

Calculate 3.66 25.13 84.60 120.78 224.3 1 23.82

Update 1.98 7.89 23.8 1 34.42 63.17 7.03 .
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CHAPTER 7
MINIMUM PATH ALGORITHMS FOR NETWORKS WITH

TIME-DEPENDENT ARC COSTS

In this chapter, we introduce two new minimum path algorithms for networks with
time-dependent arc costs: a least-time path and a least-cost path algorithm. The least-time
path algorithm calculates the minimum travel time paths on time-dependent networks with
arbitrary travel time functions. The least cost-path algorithm is a general approach that can
calculate minimum travel cost paths on networks where the travel cost is not the travel time
itself. Unlike other approaches, these algorithms are not restricted only to networks with
first-in-first-out links. They are based on the general Bellman’s principle of optimality.
They discretize the horizon of interest into small time intervals and by starting from the
destination node they calculate the minimum paths operating backwards. The least-time
path algorithm is used by the algorithm described in chapter 4 to compute a time-dependent
user equilibrium traffic assignment in a network, while the least cost path is used by the
system optimal time-dependent algorithm. Both algorithms are incorporated in the multiple
user class assignment procedure.

This chapter is organized as follows: in the first section, a brief background review is
presented. In the second section, the least-time path algorithm is analyzed. In the third
section, the least-cost path algorithm is presented. Finally, in the last section an efficient
implementation scheme for the least-time path algorithm is presented in detail and
computational results are reported.

INTRODUCTION AND LITERATURE REVIEW
Introduction and Research Objectives

This study introduces two new algorithms: a time-dependent least-time path (LTP) and
a time-dependent least-cost path (LCP) algorithm. The LTP algorithm computes the least-
time paths on networks with time-dependent travel times on the arcs, while the LCP
algorithm computes optimum paths on time-dependent networks where the travel cost is not
the travel time itself. The LTP algorithm is required in the time-dependent UE assignment
solution procedure, the LCP algorithm is used in the SO assignment algorithm. In the
latter, the arc costs consist of the marginal travel times, and the least marginal travel time
path is sought.

Both algorithms use discrete travel time and travel cost functions over a time period of
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interest (e.g. peak period) discretized into very small time intervals, A vector of labels, one
for each time interval, is maintained for every node and is updated in a label correcting
fashion. The scan eligible (SE) list can have any structure applicable to the static label
correcting shortest path case. In this study, the algorithms are shown to have polynomial
computational complexity, if the SE list has a simple queue structure; however, best
performance has been obtained with a double ended queue structure for the SE list. Both
algorithms proceed backwards, starting from the destination node, as they calculate the
optimum paths from all nodes and for every discrete time interval to the destination node.
An implementation scheme is presented for the new algorithms, to efficiently calculate
paths for large street networks on commercially available computers. Both algorithms have
been implemented and coded on a CRAY Y-MB/8  supercomputer, and tested on real street
as well as large random networks. This scheme performs extremely well, much better than
the theoretically computed upper bound, because it takes advantage of the fact that although
the travel times or costs may change every discrete time interval, the best paths do not
necessarily change as frequently. In fact, only few paths become best paths for a given
origin-destination pair, even for long time periods and highly dynamic networks.

Literature Review
The first paper dealing with the time-dependent shortest path algorithms appears to be

by Cooke and Hasley (1966). They developed an iterative function, which is an extension
of Bellman’s principle of optimality (Bellman, 1957), that gives the time-dependent
shortest paths from every node in the network to one destination node, for a set of discrete
departure time steps. The travel times on the arcs are defined in positive integer time units,
for every time step of the discrete scale SM =(to, to+l, to+2, . . ..to+M). The integer
number M is chosen so that the travel times are defined for any t E SM. The travel times
for t > to+M are assumed to be infinite. This assumption eliminates all paths with arrival
time to a destination node beyond to+M, leading possibly to undetermined paths for some
nodes and time steps. This algorithm has theoretical computational complexity O(|N|3M),
where |N| is the number of nodes in the network. However, no implementation scheme for
this approach has been reported and hence no computational results are available to
determine its actual performance.

Dreyfus (1969) proposed a label setting approach that generalizes Dijkstra’s static
shortest path algorithm (Dijkstra, 1959). This approach calculates the time-dependent
shortest path between two nodes for one departure time step with the same computational
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effort as for the static case (O(|N|2)). However, if the paths from all the nodes to a
destination node are sought, and for every time step, this approach has the same complexity
as Cooke and Hasley’s algorithm.

An implicit assumption in Dreyfus’ approach is that the FIFO (first-in-first-out)
property holds on the network links. If this assumption does not hold, then Dreyfus’
algorithm fails to detect the shortest paths. This has been stated in one form or another by
several authors, including Halpem (1974),  Malandraki (1989), Orda and Rom (1990), and
Kaufman and Smith (1993). Orda and Rom (1990), recently, proposed an approach that is
not restricted to FIFO links only. This approach can identify optimum waiting times on the
visited nodes when such waiting is allowed, or the optimum waiting time at the source
node if waiting is not allowed anywhere else. However, their approach fails to find
efficiently the best path if waiting is not allowed everywhere along the path. It must be
noted also that Orda and Rom’s approach does not apply to networks where the cost on the
links is not the travel time itself, but another time-dependent arbitrary cost function (such as
the marginal travel time encountered in the SO time-dependent assignment algorithm).

LEAST-TIME PATH TIME-DEPENDENT ALGORITHM
Formulation of the Problem

Let G=(N,A) be a finite directed graph with | A |  directed arcs connecting the nodes. Let
dij(t) be the non-negative time required to travel from node i to node j when departure time
from node i is t; dij(t) is a real-valued function defined for every t E S in such a way that
t+dij(t)E S, where S={ t0, t0+6, t0+26, . . . t0+MG}, t0 is the earliest possible departure
time from any origin node in the network, 6 is a small time interval during which some
perceptible change in traffic conditions may occur, and M is a large integer number such
that, the interval from t0 to t0+M6 is the time period of interest (or planning horizon).

We assume that dij(t) for t>t0+M6 is constant and equal to dij(t0+M6). This is a
reasonable assumption for urban transportation networks where after the peak period,
somewhat stable travel times can be assumed. Nevertheless, it is not a restrictive
assumption since M is user defined and can always be increased to include time periods
with variable travel times on some arcs. We denote by node D the destination node of
interest in the network. The algorithm proposed in this section calculates the time-
dependent least-cost paths from every node i in the network and at every time step t to the
destination node D.

At each step of the computation, denote by hi(t) the total travel time of the current
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Insertion, and Deletion operations are defined in the same way as well.
The paths are maintained in an Mx2-dimensional array of pointers for each node.

These pointers point to the successor node and its label address. This arrangement requires
2|N|M memory locations, the least possible.

In pseudo-code form the algorithm is summarized below:

Program Time Dependent Shortest Path

Call Creation

Call  Insertion(N)

Do 1, While (SE list is not Empty)

Call Deletion(CurrentNode)

Do 2, For (All nodes J that can directly reach CurrentNode)

NextNode  = J

InsertInSEList.=FALSE

Do 3, For (t=l,M)

CurrentTravelTime=TravelTime(NextNode, CurrentNode,t)

NewLabel=LABEL(CurrentNode,t+CurrentTravelTime)+CurrentTravelTime

If (LABEL(NextNode,t) <NewLabel) Then

LABEL(NextNode,t)=NewLabel

InsertInSEList=TRUE

PathPointer(NextNode,t,1)=NodeCurrent

PathPointer(NextNode,t,2)=t+CurrentTravelTime

EndIf

3 Continue

If (InsertInSEList) Call Insetion(NextNode)

2 Continue

1 Continue

Procedure Creation

Do, For (Node= 1, V- 1) Deque(Node)=0

Deque(N)=999999

FIRST=N

LAST=N

Procedure Deletion(CurrentNode)

CurrentNode=FIRST
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FIRST=Deque(CurrentNode)

Deque(CurrentNode)=-1

Procedure Insertion(Node)

If (Deque(Node)=O)  Then

Deque(LAST)=Node

LAST=Node

Deque(Node)=999999

Else

If (Deque(Node)=-  1) Then

Deque(Node)=FIRST
FIRST=Node

End If

EndIf

Where:
LABEL(Node,t)  is a variable that holds the M-vector labels for every node.
PathPointer(Node,t,1) is a pointer that points to previous node while

PathPointer(Node,t,2) points to the corresponding time of arrival at the previous node of
the shortest path from this node to the destination node N.

InsertInSEList is a logical variable which is used to determine if a label of a node was
changed.

NewLabel is an auxiliary variable that temporarily holds the new label of the next
node.

Note that all the variables are typed with lower size letters.

The most time consuming part of the algorithm is Step 2 (see Algorithm description),
where each element of the M-vector is updated for every node adjacent to the scanned node.
This Step corresponds to loop 2 in the pseudo-code, and requires 4Md computational time
units, where d is the indegree of the scanned node (number of iterations of loop 2). The
inner loop 3 can be efficiently vectorized because of the absence of inter-dependencies, and
the number of iterations M is usually greater than 64 (the number of registers in the
CRAY’s vector processor) which leads to maximum vectorization speed-up.

The efficiency of the algorithm, however, depends essentially on the total number of
scanned nodes before the process terminates. The lower bound on this number is the total
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number of nodes in the network (|N|), while an upper bound is |N|2M. The upper bound is
obtained by direct extension of the results for the corresponding static label correcting case.
As shown in the next section, this upper bound is not a tight bound in practical
applications. The complexity of the algorithm is that of Step 2 (loop 2) multiplied by the
upper bound on the number of repetitions of this Step (iteration number of loop l), or
O(|N|3M2) in the general case that the maximum indegree of a node is |N|-1.

This implementation was coded in the FORTRAN CFI77 language, and run on a
CRAY Y-MP/8 supercomputer. The results from the tests are presented in the next section.

Computational Experiments

Four different sets of networks are used to test this new algorithm. Set 1 consists of
five random networks with structure similar to street networks and with the number of
nodes ranging from 100 to 2500. The number of time steps is held constant at 240. The
travel times for each time step are generated in such a way that the FIFO criterion holds for
every link. Specifically, a randomly generated number is accepted as travel time for a given
time step only if the absolute value of its difference with the travel time of the previous time
step does not exceed the length of the time interval between the two steps. Set 1 was
designed to test the relation of the performance of the algorithm to the network size.

Set 2 contains five different representations of the same random network consisting of
1000 nodes, 2500 arcs and varying numbers of time steps that range from 120 to 640. In
set 3, the number of arcs ranges from 1000 to 11500, while both the number of nodes and
the number of time steps are kept constant at 1000 and 240, respectively. This set is used
to estimate the relationship between the execution time and the average degree of a node in a
network.

Finally, set 4 consists of one real street network, that of the core area of Austin, TX,
consisting of 625 nodes and 1742 arcs. Time-dependent travel times for this network were
produced from DYNASMART for a simulated peak period of 50.3 minutes. This peak
period is discretized into 503 time intervals of 0.1 minute each, and the travel time for each
time interval is generated.

Tables 28 to 31 present the computation times in CPU milliseconds for each set. All
runs were performed on a CRAY Y-MP/8 supercomputer, using the CFT77 FORTRAN
compiler. This computer has eight CPU’s with vector pipeline architecture. The algorithm
is coded in such a way as to allow vectorization when applicable. Vectorization is
especially well suited for Step 2 of the algorithm, in which M iterations are performed,
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since no dependency exists between any two iterations and the number M is usually larger
than the number that CRAY considers the minimum number of iterations for maximum
speed-up. However, no attempt was made to exploit other hardware characteristics of the
CRAY beyond vectorization. In addition, in order to smooth out the effect of the
destination node choice on the execution time, thirty runs were performed for thirty
different destinations for every network, and the average computation time is reported. It
must be stressed, however, that the algorithm is not machine dependent. It can be applied
on any computer, although it will perform better on a vector processor architecture.

Tables 28 and 29 contain the results for network sets 1 and 2; these results indicate that
the computation time increases almost linearly with the number of nodes and the number of
time steps in the network.

The results of Table 30, on the other hand, suggest a nonlinear relation between the
execution time and the average degree of a node in the network. An exponential model was
calibrated from these data using regression, yielding the following relationship:

Computation Time=22.13 dl.4
where d is the average indegree of a node in the network.

Table 31 contains the averages and standard deviations of the computation time and the
total number of scanned nodes for the real street network of the Austin, TX core area.

Table 28. Computation Times in Milliseconds, for Different Network Sizes

100 Nodes 500 Nodes 1000 Nodes 1500 Nodes 2500 Nodes
250 Arcs 1250 Arcs 2500 Arcs 5000 Arcs 8000 Arcs

240 Time Int. 240 Time Int. 240 Time Int. 240 Time Int. 240 Time Int.
5.97 35.73 73.28 141.42 235.04

Table 29. Computation Time in Milliseconds, for Different Number of
Time Steps Varies

1000 Nodes 1000 Nodes 1000 Nodes 1000 Nodes 1000 Nodes
2500 Arcs 2500 Arcs 2500 Arcs 2500 Arcs 2500 Arcs

120 Time Int. 240 Time Int. 360 Time Int. 480 Time Int. 640 Time Int.
37.95 73.28 102.46 131.56 158.54
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Table 30. Computation Time in Milliseconds, for a Network with 1000
Nodes, 240 Time Steps, and Varying Number of Arcs

1000 Nodes 1000 Nodes 1000 Nodes 1000 Nodes 1000 Nodes
2ooo Arcs 3000 Arcs 6000 Arcs 9000 Arcs 11500 Arcs
240 Time Int. 240 Time Int. 240 Time Int. 240 Time Int. 240 Time Int.
55.89 91.88 253.95 448.19 624.86

Table 31. Performance of the Algorithm on the Real Street Network

Mean
St. Deviation

Computation time in Total number of scanned
milliseconds nodes

107.41 736

11.82 81

The total number of scanned nodes is the main factor that affects the performance of the
algorithm. The lower bound for this number is the number of nodes in the network, |N|,
while an upper bound was found to be |N|2 M in a previous section. The results in Table
31 show that for the tested network of 625 nodes, the total number of scannings was 736,
or 1.18|N| which is considerably less than the theoretical upper bound. Moreover, from the
low values of the standard deviations, it can be inferred that the algorithm is reasonably
stable.

Combining the above results, we can conclude that as is common with shortest path
problems, the actual computational performance for the networks considered here is on the
order of INIMdl.4, which is far from the worst case theoretical complexity O(|N|3M2).
In addition, as mentioned previously, the algorithm vectorized efficiently. The algorithm
was tested on the Austin core street network with the vectorization feature disabled for the
same destination nodes as above, and the average execution time was found to be 728.02
milliseconds. This means that the vectorization in this case yielded a speed up of 6.74
(speedup is defined as the ratio of the total computation time of the algorithm without
vectorization to the corresponding computation time with vectorization).

Next, we compare our approach to the expanded static case proposed by Dreyfus
(1969). We implemented that scheme as efficiently as we would, and achieved an
execution time of 2.2 milliseconds to find the time-dependent least-time path between one
origin and one destination, for one time step on the Austin core network. In order to
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compare it to our proposed algorithm, the time-dependent least-time paths must be
calculated from all 625 nodes of the network, to one destination and for 503 time steps for
each node. This calculation would require a total time of 0.0022x625x503 = 691.25
seconds. However, the calculation of one path for one node and one time step produces at
the same time the paths to the destination from every node along the path for one time step.
The maximum number of nodes in a path for the real street network was 72. Therefore, we
can estimate a lower bound on the total execution time, by assuming that every time one
path is computed, 72 other not previously calculated paths are obtained at the same time.
This lower bound is 9.6 seconds, which greatly exceeds the 0.107 seconds achieved with
the proposed algorithm

The proposed algorithms take advantage of two main characteristics of networks with
time-dependent arcs. One is that only few paths between a given OD pair become best
paths at any point in time. Usually, three or four paths are interchanged as best paths at
different time steps, one path often maintaining its best path status for most of the time.
For example, the maximum number of paths that we observed during the testing of the real
street network was seventeen (out of a possible 503).

The second characteristic of dynamic networks is that even if different paths were best
at different times between a given OD, these paths would be likely to share the same next-
to-the-origin node (i.e. second node in the path). This means that most of the best paths
from a given node result from the scanning of just one of the neighboring nodes. The
effectiveness of our algorithm is attributed to these two reasons. Specifically, the fewer the
paths that are best at different times, the closer is the behavior of the algorithm to that of
static label correcting algorithms. In the extreme case that the same path remained best
between a given OD pair for all the time steps, the corresponding origin node would
contribute to the total computation time of the algorithm as if the network were static. Even
if more than one path were best for a given OD pair, these paths could be calculated in just
one scanning of a neighbor node. From Table 3 1, we can see that for the real street
network of Austin, TX only 111 (736-625) nodes were scanned for a second time,
although in general different paths were best at different times for a given origin node.
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CHAPTER 8
CONCLUSION

The procedures presented in this report constitute a major advance in the state-of-the-
art of dynamic assignment and traffic simulation-assignment for large-scale networks,
especially in connection with ATIS/ATMS applications. The success of ATIS/ATMS
depends on the ability to use the real-time information available to the central controller for
real-time routing and traffic control decisions. The procedures developed in this study
provide and essential component in the overall decision-support methodologies needed for
ATIS/ATMS planning and operation.

The framework and algorithms presented in this report provide a flexible and modular
modelling capability that can evolve as the results of future research, in areas such as
tripmaker behavior and response to information become available. The procedures can also
be interfaced with traffic control modules as well as other ATMS support functions in the
context of an overall ATMS architecture.

To summarize, the following major procedures were developed in this study:
1. DYNASMART: A descriptive simulation-assignment framework, that meets or

exceeds all functional requirements set forth in the statement of work. Its purpose is to
predict the temporal and spatial patterns of flows in a network for given time-dependent
origin-destination trip desires, network characteristics including traffic control schemes,
and information supply strategies, as summarized in Figure 54.

2. System Optimal Single Class Dynamic Traffic Assignment Algorithm: The purpose
of this algorithm is to determine the paths to which all vehicles should be directed to, given
time-dependent O-D trip desires and prevailing traffic control scheme, so as to minimize
overall user cost (time) in the network over the duration of interest. This algorithm consists
of an iterative procedure, where DYNASMART is used as a simulator to represent traffic
propagation in the network for a given time-dependent path assignment, as summarized in
Figure 55.

3. User Equilibrium Single Class Dynamic Traffic Assignment: This algorithm is a
variant of the SO version. It solves for a time-dependent assignment of vehicles to specific
paths, between each O-D pair, for given time-dependent O-D trip desires, so that no user
can reduce his/her travel time by unilaterally switching paths for the same departure time.
DYNASMART is again used as a simulator within the iterative search procedure, as
summarized in Figure 56.
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4. Multiple User Classes Dynamic Traffic Assignment Algorithm: This algorithm
recognizes several classes of network users on the basis of information supply and user
behavior, including: SO users, UE users, boundedly rational users, and those with pre-
specified paths. It solves simultaneously for the paths to which SO users should be
directed to so as to minimize overall travel time in the network, as well as the paths which
UE users will follow to satisfy their requirements, recognizing that some users may be
following their own heuristic path selection rules while others may just have to be viewed
as externally specified. This algorithm is only possible because of the flexibility of
DYNASMART to consider all these classes. It is summarized in Figure 57.

5. Rolling Horizon Implementation Framework for SO Single Class and MUC
Algorithms: This Framework is intended for quasi real-time implementations of the
assignment algorithms in situations where the time-dependent O-D trip desires cannot be
assumed known a priori with sufficient reliability. It is intended as the principal manner in
which the DTA algorithms would be used in real-time as an ATMS support function.
The above procedures are rather complex entities that incorporate a large number of
components and modules. Among those, major development was necessary as part of this
study in the area of path processing algorithms, described in Chapters 6 and 7. In
particular, the following path processing procedures have been developed:

1. K-Shortest Path (K-SP) Computation: This algorithm is used in the path
processing component of DYNASMART to solve for the K best paths from all origin
nodes to each given destination node for a given set of link travel times.

2. K-Shortest Path Update: This algorithm updates the travel times and re-sorts a set
of K stored paths; it is used in the path processing component of DYNASMART to update
the paths obtained using the K-SP computation algorithm in the time intervals between
successive computations (see Chapter 6 for detailed discussion of the logic for this
strategy).

3. K-SP Computation for Multiple User Classes: Special version of the K-SP
computation algorithm that guarantees the best K; paths are found for each vehicle class I,
i = l,...,U (U is the number of classes). It is used instead of the single class algorithm in
the path processing component of DYNASMART in the presence of multiple vehicle
classes.

4. K-SP Update for Multiple User Classes: Special version of the single class update
algorithm for use in conjunction with multiple vehicle classes in DYNASMART.
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5. Time-Dependent Least Time Path Algorithm: This algorithm computes the least-
time path from all origin nodes to a given destination node for all departure time intervals
(from the origin) for a given network with time-dependent link travel times. This algorithm
is used in UE single user class DTA algorithm, as well as in the MUC DTA algorithm,
where it receives its input data from DYNASMART.

6. Time-Dependent Least Cost Path Algorithm: This algorithm computes the least cost
path from all origin nodes to a given destination, for given time-varying costs on the
network links. These costs are different from the travel times per se. In this study, they
consist of the marginal trip times, in the context of the SO single user class DTA algorithm
and the MUC DTA algorithm.

Several aspects of the procedures developed here can benefit from additional
investigation. In addition to the various modelling elements that could be improved
through further field observations, guidelines pertaining to the choice of various user-
controlled parameters in the dynamic assignment process are necessary. These include
issues of the appropriate length of the assignment interval relative to the simulation interval,
frequency of path updates, assumptions made in the rolling horizon implementation and the
sensitivity to various modelling and execution assumptions described in connection with
the procedures in question. These issues will form the basis of continuing investigation
that builds on the foundation developed in this study.
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DESCRIPTION OF INPUT AND OUTPUT DATA FILES

This Appendix documents the input data set and output data files in the DYNASMART
network assignment-simulation model. This description is intended primarily to illustrate
the kind of information input to DYNASMART, and the kinds of reports its produces.
This description is not meant to be a self-contained user’s guide. The input and output file
nomenclature applies primarily to the implementation of DYNASMART on the University
of Texas’ CRAY Y-MP computer. Because it is written in CRAY FORTRAN (CFT 77),
this version has been found to be highly portable to other environments, including
CONVEX C220, IBM RISC/6000, and SUN SPARC II workstations with only very
minor modifications. However, some of the output file structure may need to be modified
for implementations on different platforms. .

The current version of DYNASMART consists of 20 subroutines, and its program
structure is very flexible for adding other functions, such as different behavioral rules and
different vehicle classes. DYNASMART can also be applied in different situations. For
example, a modified version of DYNASMART is used as the simulator in the SO, UE, and
MNC dynamic traffic assignment algorithms.

INPUT DATA DESCRIPTION

Data sets and parameters used in DYNASMART cover transportation planning, traffic
simulation, traffic control and user behavior components. This section illustrates these data
sets and parameters.
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1. Network data
The data set is used to define network configurations.
A. Basic Data

NZONES  : number of zones in the network
NNODES : number of nodes in the network
NARCS : number of arc-chains
N : number of links (segments)
NDESTS : number of destinations
KAY : “K” for the K-shortest path

B. Zonal data
IPZ(l..NZONES) : Demand zone numbers; each demand zone must have a
unique identification number

C. Destinations
IDZ(l..NZONES) : Each zone must have a centroid as a destination.
The destination node is a network node, and must be within this demand zone. The
order is the same as zonal data. There will be zeros for some zones, which means
they do not have destination nodes.

D. The Mapping between demand zones and network nodes
IZONE(network node) = demand zone number
For each network node, there must be an associated demand zone number.

E. Link data
IUNOD : upstream node
IDNOD : downstream node
LENGTH : Length of the link (in feet)
14 : 0 : no generation

1 : volume from the zone of the upstream node
2 : volume from the zone of the downstream node

NLANES : number of lanes
VMAX : the maximum velocity (miles/minute)
SAT : saturation flow rate (vehicles/second)
LINK_IDEN : link identification

1 : freeway link
2 : freeway segment with detector
3:onramp
4 : off ramp
5 : arterial
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6 : HOV lane
BAY : left-turn bay

Example:
10
1
2
1
2
3
4
5
6
7
a
9

10
1

. 1
2
2

50
2
5
1
1
1
2
2
2
3
1
0
0

168 168 10 5
3 4 5 6

13 18 25 30

2 2640 2 2 0.333 0.50 5
7 2640 2 2 0.333 0.50 5
12640 2 2 0.333 0.50 5
3 2640 2 2 0.333 0.50 5

2 8 2640 2 2 0.333 0.50 5

7 a 9 lo
35 36 37 44
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2. Demand Data
A flexible dynamic demand input format is used in DYNASMART. Users need to

define the number of loading intervals and associated time periods. For each period, an OD
matrix (zone-to-zone) needs to be prepared in order to generate and load vehicles into the
network.
Example:

7
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

0.0 1.0 1.0 1.0 1.0 1.5
1.0 1.0 1.0 1.0
1.5 0.0 1.0 1.0 1.0 1.5
1.0 1.0 1.0 1.0
1.5 1.0 0.0 1.0 1.0 1.5
1.0 1.0 1.0 1.0
1.5 1.0 1.0 0.0 1.0 1.5
1.0 1.0 1.0 1.0
1.5 1.0 1.0 1.0 0.0 1.5
1.0 1.0 1.0 1.0
1.5 1.0 1.0 1.0 1.0 0.0
1.0 1.0 1.0 1.0

Alternatively, DYNASMART accepts input data directly in the form of a vehicles
file, containing O-D information, and possibly a pre-specified initial path, for each
generated vehicle. This capability is used primarily in conjunction with the SO, UE and
MUC dynamic assignment algorithms.
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3, Scenario input data
In this data set, users can define various parameters and variables describing a

particular scenario for a simulation run. Below is an example list of such parameters used
in some of our experiments. It is expected that additional parameters will be included in
this file for specific applications.

RIBFA : relative indifference band
BOUND : threshold bound (minutes)
RNUMBER : a multiplication factor for demand generation (load factor)
ISEED : random number seed (123457)
IPINIT : index for initial routes

0 : randomly select from K paths
1: select best current path at origin

COM_FRAC : fraction of compliant vehicles
NTTO : maximum simulation length (in minutes)
TII : simulation interval (in minutes)
INDEX-SIG : index for signal control

0 : deactivate signal control
1 : keep signal control

CLASS and CLASSPRO : define multiple user classes for System Optimal case
1 : vehicles with prescribed paths
2 : vehicles with SO paths
3 : vehicles with UE paths
4 : vehicles with real time information

CLASS2 and CLASSPR02 : define multiple user vehicle classes in DYNASMART
1 : non-equipped vehicles, passenger car (PC)
2 : non-equipped vehicles, truck
3 : non-equipped vehicles, high occupancy vehicles (HOV)
4 : equipped vehicles, PC
5 : equipped vehicles, truck
6 : equipped vehicles, HOV
6 : buses

OPTIONS: to activate various functions
Example:
0.00 0.00 0.00 1.00 123457 1
0.5
120 0.1
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1 : index for signal control
2 : index for left capacity
1 : option for left turn test
0 : option for bay (1: bay, 0 w/o bay 1
1 : option for vms
1 : option for bus operation
4

0.00 0.00 0.00 0.00
6

0.5 0 0 0.5 0.00 0.00
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4. Signal control data
In this file, users need to define the control type and parameters for each

intersection in the surface street network.
A. Signal Node

NODE(I,l) : node number
NODE(I,2) : control type

1 : no control
2 : yield sign
3 : stop sign
4 : pretimed control
5 : actuated signal control

NODE(I,3)  : phase number, needed only for control types 4 and 5
NODE(I,4)  : cycle length, needed only for control types 4 and 5

B. Green time allocation
ITMP : node number
NSIGN(I,l) : phase number
Pretimed control (actuated signal control data)
NSIGN(I,2) : offset (the maximum green time)
NSIGN(I,3) : green time (the minimum green time)
NSIGN(I,4) : amber time
NSIGN(I,5) : number of inbound links in this phase
NSIGN(I,6: 11) : associated links’ number

C. Movement for each approach for each phase
GMOVE(I,phase number, l-8)

Example:

112 60
242 60
342 60
442 60
542 60
612 60
742 60
a52 60
2 1 0 25 5 2 1 3
2 2 0 25 5 2 44 a
3 1 025 5 2 2 9
3 2 025 5 2 2 4
4 1 025 5 2 3 5
4 2 0 25 5 2 10 45
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51 0 25 5 2 44 11
5 2 025 5 2 4 6
7 1  0 2 5 5 2 1 13
7 2 0 25 5 2 1 8
a 1 25 10 5 2 2 14
a 2 25 10 5 2 7 9
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5. ramp control data
In this file, ramp and variable message signs are specified, especially for freeway

operations.
DEC_NUM : detector number for ramp control
VMS_NUM : Number of VMS
HOV-OCCP : % of high vehicle occupancy

A. Ramp Data
Detector ID number
From Node
To Node
Upstream Position (feet)
Downstream Position (feet)
From node of controlled ramp
To node of controlled ramp
CONS1 : ramp parameter 1
CONS2 : ramp parameter 2
Ramp Rate : (vehicles/second)

B. VMS data
VMS ID number (a number is assigned for each VMS)
Type : 1 : speed advisory

2 : route advisory
3. congestion warning

Location : From node and To Node
Parameters for each type :

1. the speed reduction factor (speed limit, suggested speed)
2. the specific route in K-shortest paths

(the assigned path number, destination number)
3. k% of vehicles : divert to other paths

(k factor, the path assigned)
Example Data for Ramp Metering

11
1 45 44 260 250 10 45 .32
2 46 45 260 250 16 46 .320
3 47 46 260 250 22 47 .320
4 48 47 260 250 28 48 .320
5 49 48 260 250 33 49 .320
6 50 49 260 250 36 50 .320

Example Data for VMS

.20 0.50

.20 0.50

.20 0.50

.20 0.50

.20 0.50

.20 0.50
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3
1 47 46 6 6
2 23 17 1 0
3 19 13 5 3
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6. Movement data
This file needs to be prepared for left-turn operation. Movements are defined for

every link, and the format is as follow:
From Node
To Node
Left_Turn Node
Straight Node
Right Node
Other

Example:
1  2 4 4 3 a
1 7 a 13
2 1 7 0 0
2 3 0 4 9 43
2 a 9 14 7
2 44 5 43
3 2 a 1  44
3 4 5 10
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7. Incident data
The data for each incident includes the start and end times of the incident and its

severity. This information is pre specified for a particular scenario evaluated by
DYNASMART. However, the data can be readily modified in a real time execution. If a
link is closed, all the vehicles will be rerouted after reaching the switching point, i.e. the
upstream node of the link.

INCI_NUM : total number of incidents
INCI(i,l) : link number
INCI(i,2)  : start time of incident i
INCI(i,3)  : end time of incident i
INCI(i,4)  : severity of incident i

Example:

2
1 2 0.0 5.0 0.5
2 3 0.0 5.0 0.5
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8. Bus data
The input data for bus operation includes :
BUS ID : au identifier for bus
Start Time : the start time of the bus
Average dwell time
Number of Nodes in the route
The sequence of Nodes
Operation Index : 0 : no stop

1: stop at the near block
2: stop at the midblock
3: stop at the midblock  bus bay

Example:
3
1
2
0
2

24
0
3

31

1 2 1.0 1.0 6
a 14 20 26 25
1 2 1 2 0

18 24 1.0 1.0 a
30 29 34 33 32 31 25
1 2 1 2 0 0 0

26 31 1.0 1.0 7
25 19 13 7 1 2

0 12 12 0 0
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DESCRIPTIONS OF OUTPUT FILES

Output files are generated for each DYNASMART run. Although a wide variety of
output information can be obtained from DYNASMART, it is not efficient to produce all
the files due to the computational cost. Since fort.4 and fort.6 provide summary
information of a simulation run, it is recommended that at least these two output files be
produced. The numbers from 1 to 99 can be used as input and/or output file units on
CRAY, so the description of these files follows this sequence.
File Organization
fort.4 : simulation process monitoring unit
fort6 : title and the summary information
fort, 18 : vehicle trajectory
fort 16 : ALINEA ramp metering unit
fort.30 . . . fort.39: Link Information Output Units

C - -
C -- for the purpose of post data analysis

information will be stored in
files in order to perform detailed

C --some link
C -- different
C -- analysis
C -- fort.30 :
C -- fort.31 :
C -- fort.32 :
C -- fort.33 :
C -- fort.34 :
C -- fort.35 :
C -- fort.36 :
C -- fort.37 :
C -- fort.38 E
C -- fort.39 :
C --

generation volume
volume on links
vehicle-queue
velocity
concentration
velocity for the moving vehicles
concentration for the moving part
reserved for latter use
greentime for eachapproach
number of vehicles crossing intersection

fort.40 . . fort.49: Input Data Units
fort.90 . . fort.99:  reserved for debugging work

File Listing

total 15243
drwx------ 2 cedr132  cedr
drwxr-xr-x 43 cedr132  cedr
-rw------- 1 cedrl32  cedr
-rw------- 1 cedrl32  cedr
-rw------- 1 cedrl32  cedr
-rw------- 1 cedrl32  cedr
-rw------- 1 cedrl32  cedr
-rw------- 1 cedrl32  cedr
-rw------- 1 cedr132  cedr
-rw------- 1 cedrl32  cedr

4096 Jan 25 15:57 ./
4096 Jan 25 16:18 ../

67 Jan 25 15:577 fort.10
67 Jan 25 15:577 fort.15

6206 Jan 25 15:577 fort.16
30591530 Jan 25 15:577 fort.17
5475128 Jan 25 15:577 fort.18

97 Jan 25 15:577 fort.2
13651342 Jan 25 15:577 fort.20

67 Jan 25 15:577 fort.21
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fort.4 - intermediate output file for monioring the simulation process

IT : simulation time step
VEHICLES : total number of vehicles generated
TAGGED IN : Number of tagged vehicles in the network
OUT-N : Number of non-tagged vehicles that have reached their destination
OUT-T : Number of tagged vehicles that have reached their destination

IT:
IT:
IT:
IT:
IT:      5
IT:
IT:
IT:
IT:
IT:
IT:

1
2
3
4

6
7
8
9

10
11

VEHICLES: 0 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
VEHICLES: 2 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
VEHICLES: 44 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
VEHICLES: 122 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
VEHICLES: 191 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
VEHICLES: 242 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
VEHICLES: 309 TAGGED IN: 0 OUT-N: 0 OUT-T: 0
V E H I C L E S  : 379 TAGGED IN: 0 OUT-N: 1 OUT-T: 0
VEHICLES: 427 TAGGED IN: 0 OUT-N: 2 OUT-T: 0
VEHICLES: 502 TAGGED IN: 0 OUT-N: 3 OUT-T: 0
VEHICLES: 571 TAGGED IN: 0 OUT-N: 5 OUT-T: 0

IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:
IT:

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:
VEHICLES:

3027
3074
3195
3297
3410
3508
3616
3718
3837
3931
4071
4079
4226
4366
4460
4562
4652
4789
4887

TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
T A G G E D  IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:
TAGGED IN:

0 OUT-N:
0 OUT-N:

121 OUT-N:
223 OUT-N:
336 OUT-N:
434 OUT-N:
542 OUT-N:
641 OUT-N:
758 OUT-N:
851 OUT-N:
988 OUT-N:
993 OUT-N:

1139 OUT-N:
1278 OUT-N:
1367 OUT-N:
1468 OUT-N:
1557 OUT-N:
1685 OUT-N:
1775 OUT-N:

531 OUT-T:
560 OUT-T:
582 OUT-T:
615 OUT-T:
652 OUT-T:
717 OUT-T:      0
757 OUT-T:
792 OUT-T:
824 OUT-T:
851 OUT-T:
883 OUT-T:
910 OUT-T:
944 OUT-T:
996 OUT-T:

1062 OUT-T:
1106 OUT-T:
1149 OUT-T:
1195 OUT-T:
1241 OUT-T:

0
0
0
0
0

0
3
5
6
9

12
13
14
19
20
21
30
38

IT: 901 VEHICLES: 26214 TAGGED IN: 18 OUT-N: 6216 OUT-T: 19908
IT: 902 VEHICLES: 26231 TAGGED IN: 18 OUT-N: 6216 OUT-T: 19908
IT: 903 VEHICLES: 26231 TAGGED IN: 18 OUT-N: 6221 OUT-T: 19908
IT: 904 VEHICLES: 26233 TAGGED IN: 17 OUT-N: 6224 OUT-T: 19909
IT: 905 VEHICLES: 26233 TAGGED IN: 16 OUT-N: 6225 OUT-T: 19910
IT: 906 VEHICLES: 26233 TAGGED IN: 14 OUT-N: 6225 OUT-T: 19912
IT: 907 VEHICLES: 26233 TAGGED IN: 13 OUT-N: 6225 OUT-T:: 19913
IT: 908 VEHICLES: 26233 TAGGED IN: 13 OUT-N: 6228 OUT-T: 19913
IT: 909 VEHICLES: 26233 TAGGED IN: 12 OUT-N: 6230 OUT-T: 19914
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IT: 910 VEHICLES: 26233 TAGGED IN: 11 OUT-N: 6234 OUT-T:: 19915
IT: 911 VEHICLES: 26233 TAGGED IN: 9 CUT-N: 6235 OUT-T: 19917
IT: 912 VEHICLES: 26233 TAGGED IN: 9 OUT-N: 6236 OUT-T: 19917
IT: 913 VEHICLES: 26233 TAGGED IN: 7 OUT-N: 6243 OUT-T: 19919
IT: 914 VEHICLES:: 26233 TAGGED IN: 7 OUT-N:   6244 OUT-T:  19919
IT: 915 VEHICLES: 26233 TAGGED IN: 6 OUT-N: 6244 OUT-T: 19920
IT: 916 VEHICLES:: 26257 TAGGED IN: 6 OUT-N: 6244 OUT-T:: 19920
IT: 917 VEHICLES:: 26257 TAGGED IN: 6 CUT-N: 6246 OUT-T: 19920
IT: 918 VEHICLES:: 26257 TAGGED IN: 4 CUT-N: 6246 OUT-T:: 19922
IT: 919 VEHICLES: 26257 TAGGED IN: 4 CUT-N: 6248 OUT-T: 19922
IT: 920 VEHICLES:: 26257 TAGGED IN: 1 CUT'-N: 6253 OUT-T:: 19925

661 711 707 644 711 684 683 675 696 707
623 648 740 649 694 672 673 697 680 681
656 734 686 711 674 715 723 694 705 666
696 720 697 671 662 746 703 0 0 0
0 0 0 684

TOTAL GONE OUT= 26179
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fort.6 - major output file for system performance

Overall information for system performance is included in fort.6, and error message (if
any) will be shown in this file.

EXAMPLE :
 *********************************************************** 
* DYNASMART V1.0: Dynamic Network Assignment *
* & Simulation Model *
* Developed in *
* The University of Texas at Austin *
* March 20, 1994 *
*************************************************

****************************************
* Basic Information *
****************************f*************

NETWORK DATA
NODES : 50
LINKS : 168
DESTS : 10
ZONES : 10

SIGNAL DATA
NO CONTROL  16
YIELD SIGNS  0
STOP SIGNS : 0
PRETIMED CONTRO : 26
ACTUATED CONTROL : 8

RAMP DATA
RAMP CONTROL : 0

ASSUMPTION

LEFT_OPTION : 1

PATH K : 5
TIME for UPDATING : 3.

INITIAL ROUTES
1. assign the best path
2. Use current path information

-_------------------------------------
Multiple User Class Percentages

----------------------------------
Prescribed Paths : 0.
so Paths : 0.
U E  Paths : 0.
REAL TIME Paths : 0.
----------------------------------------

DYNASMART Multiple User Class Percentages
-------------------------------------------
Non-equipped PC : 0.5

TRUCK : 0.
HOV : 0.
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INFO : 560.8244507816
AVERAGE OVERALL TRIP TIMES (MINS)

OVERALL: 5.641210609034
NOINFO : 5.75957724897
INFO : 5.524456911327

--------------------------------------
TOTAL ENTRY QUEUETIMES (HRS)

OVERALL: 119.9333333334
NOINFO : 61.06333333336

INFO : 58.87000000003
AVERAGE ENTRY QUEUE TIMES (MINS)

OVERALL :: 0.5947598975124
NOINFO : 0.6098202396807
INFO : 0.5799047775409

-------------------------------------

TOTAL STOP TIME ( MINS )
OVERALL: 26432.9790396
NOINFO : 13684.31511536
INFO : 12748.66392443

AVERAGE STOP TIME ( MINS )
OVERALL:: 2.184724278007
NOINFO : 2.277682276191
INFO : 2.093032987101

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TOTAL TRIP DISTANCE ( MILES )

OVERALL:: 16350.12499954
NOINFO : 8106.749999885
INFO : 8243.374999882

TOTAL VEHICLES : 12099
AVERAGE TRIP DISTANCE ( MILES )

OVERALL: 1.351361682745
NOINFO : 1.349325898782
INFO : 1.353369725806
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fort.16

Output describes the behavior of ramp-metering for every controlled ramp. It provides user
defined interval report and lists all the ramp and associated flow rate (veh/sec)

**** The output file for ramp-control ****

-- This file provides the changed ramp control
and changed saturation flow rate.

iteration 20

34 58 82 106 127 137 9 29 53 77 122
0.56 0.56 0.56 0.54 0.49 0.44 0.45 0.50 0.53 0.55 0.56

iteratim 40

34 58 82 106 127 137 9 29 53 77 122
0.52 0.45 0.36 0.23 0.24 0.32 0.28 0.29 0.34 0.45 0.51

iteration  60

34 58 82 106 127 137 9 29 53 77 122
0.49 0.24 0.12 0.02 0.04 0.28 0.23 0.06 0.05 0.25 0.43

iteration 80

34 58 82 106 127 137 9 29 53 77 122
0.44 0.27 0.18 0.09 0.04 0.14 0.17 0.18 0.20 0.21 0.33

iteration 100

34 58 82 106 127 137 9 29 53 77 122
0.48 0.19 0.17 0.02 0.02 0.23 0.20 0.20 0.28 0.39 0.42

iteration 120

34 58 82 106 127 137 9 29 53 77 122
0.47 0.27 0.07 0.02 0.02 0.24 0.18 0.19 0.15 0.28 0.42

iteration 140

34 58 82 106 127 137 9 29 53 77 122
0.43 0.23 0.11 0.02 0.02 0.30 0.23 0.22 0.23 0.32 0.33

iteration 160

34 58 82 106 127 137 9 29 53 77 122
0.49 0.26 0.07 0.02 0.12 0.27 0.22 0.24 0.23 0.35 0.44

iteration 700
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34 58 82 106 127 137 9 29 53 77 122
0.52 0.37 0.33 0.33 0.38 0.56 0.45 0.36 0.35 0.34 0.39

iteration 720

34 58 82 106 127 137 9 29 53 77 122
0.51 0.29 0.27 0.29 0.44 0.56 0.39 0.32 0.34 0.39 0.47

iteration 740

34 58 82 106 127 137 9 29 53 77 122
0.52 0.38 0.39 0.42 0.55 0.56 0.42 0.29 0.26 0.37 0.49

iteration 760

34 58 82 106 127 137 9 29 53 77 122
0.53 0.43 0.40 0.37 0.56 0.56 0.39 0.32 0.35 0.38 0.51

iteration 780

34 58 82 106 127 137 9 29 53 77 122
0.52 0.37 0.40 0.43 0.55 0.56 0.43 0.31 0.27 0.35 0.45

iteration 800

34 58 82 106 127 137 9 29 53 77 122
0.54 0.42 0.39 0.37 0.55 0.56 0.38 0.39 0.39 0.41 0.47

iteration 820

34 58 82 106 127 137 9 29 53 77 122
0.52 0.38 0.40 0.42 0.55 0.56 0.43 0.40 0.37 0.42 0.49

iteration 840

34 58 82 106 127 137 9 29 53 77 122
0.55 0.43 0.42 0.38 0.56 0.56 0.38 0.40 0.43 0.48 0.52

iteration 860

34 58 82 106 127 137 9 29 53 77 122
0.54 0.43 0.47 0.53 0.55 0.56 0.42 0.39 0.36 0.43 0.49

iteration 880

34 58 82 106 127 137 9 29 53 77 122
0.56 0.56 0.56 0.56 0.56 0.56 0.38 0.40 0.44 0.48 0.50
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fort. 17 -- intermediate output file

This file provides information on the simulation process in terms of vehicle movements and
records vehicles traversing from link to link. Information includes vehicle’s ID, current
link, next link, and time of transfer. The last index shows the previous number of
traversing for this trip.

Vehicle Now Next Time : 1 138 142 0.27
Vehicle Now Next Time :     2  163  159  0.27
Vehicle Now Next Time : 41 138 142 0.28
Vehicle Now Next Time : 42 138 141 0.28
Vehicle Now Next Time : 43 163 159 0.28
Vehicle Now Next Time : 44 163 159 0.28
Vehicle Now Next Time :   121  138  142  0.28
Vehicle Now Next Time : 122 163 159 0.28
Vehicle Now Next Time :   188  138  142  0.28
Vehicle Now Next Time : 189 138 142 0.28
Vehicle Now Next Time : 190 163 159 0.28
Vehicle Now Next Time : 191 163 159 0.28
Vehicle Now Next Time : 3 15 0.50
Vehicle Now Next Time : 5 3 2 0.50
Vehicle Now Next Time : 6 4 7 0.50
Vehicle Now Next Time : 8 10 9 0.50
Vehicle Now Next Time :     9   11  15   0.50
Vehicle Now Next Time : 10 12 32 0.50
Vehicle Now Next Time : 11 13 12 0.50
Vehicle Now Next Time : 12 14 16 0.50
Vehicle Now Next Time : 15 17 41 0.50
Vehicle Now Next Time : 16 18 1 0.50
Vehicle Now Next Time : 18 20 44 0.50
Vehicle Now Next Time : 19 39 16 0.50
Vehicle Now Next Time :    21   42  19   0.50
Vehicle Now Next Time : 23 44 67 0.50
Vehicle Now Next Time : 24 63 41 0.50
Vehicle Now Next Time : 26 66 44 0.50
Vehicle Now Next Time : 28 68 90 0.50
Vehicle Now Next Time : 29 87 65 0.50
Vehicle Now Next Time : 31 90 67 0.50
Vehicle Now Next Time : 33 92 114 0.50
Vehicle Now Next Time : 34 111 88 0.50
Vehicle Now Next Time : 36 132 115 0.50
Vehicle Now Next Time : 37 133 119 0.50
Vehicle Now Next Time : 38 134 137 0.50
Vehicle Now Next Time : 39 135 127 0.50
Vehicle Now Next Time : 40 136 130 0.50
Vehicle Now Next Time : 239 138 142 0.28

Vehicle Now Next Time : 12000 95 99 0.82
Vehicle Now Next Time : 8769 98 94 5.32
Vehicle Now Next Time : 6497 98 94 7.31
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0
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0
0

0
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Vehicle N o w  Next Tim : 11363 98 94 1.74
Vehicle Now Next Time : 9627 98 93 4.24
Vehicle Now Next Time : 8963 98 96 4.43
Vehicle Now Next Tim : 7979 98 94 5.69
Vehicle Now Next Time : 12191 98 95 0.56
Vehicle Now Next Time : 10322 99 106 1.50    0
Vehicle Now Next Time : 10466 99 106 1.66
Vehicle Now Next Time : 10882 99 106 1.41
Vehicle Now Next Time : 10105 99 102 2.82
Vehicle N o w Next Time : 11031 99 104 1.80
Vehicle Now Next Time : 10452 99 102 3.02
Vehicle Now Next Tim : 10389 99 104 3.13
Vehicle Now Next Time : 12072 99 102 0.64
Vehicle Now Next Time : 12193 101 143 0.51
Vehicle Now Next Time : 9649 103 98 3.59
Vehicle Now Next Tim : 9413 103 98 3.39
Vehicle Now Next Time : 8933 103 98 4.94
Vehicle Now Next Tin-e : 9351 103 98 4.30
Vehicle Now Next Time : 6740 103 98 6.32
Vehicle Now Next Time : 8253 103 98 5.46

1
3
3
4
0

0
0
2
1
2
2
0
0
2
2
3
2
4
3
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fort. 18

Fort. 18 lists all vehicles’ trajectories. Some information in the first line include :
vehicle ID #
what kind of tag : 0 : not tagged

1 : Tagged vehicle but did not reach the destination before the end of
simulation interval

2 : Tagged vehicle
information : 0 : without information

1 : with information
From : starting node
To : destination node
ST : Departure time ( from 0.0 )
ET:Arrivaltime(mins)
NN : number of nodes in this trip
Then, nodes of the path, cummulative  trip times, link trip times and delay time will be listed
under the vehicle information.

**** Output file for vehicles tranjectories ****
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This file provides all the vehicles tranjectories.

Vehicle( # tag inf From To ST ):
8

10 0

37 38 39 40 41 42 43 9
0.27 0.83 1.38 1.95 2.51 3.07 4.11
0.27 0.55 0.56 0.56 0.56 0.56 1.04
0.00 0.00 0.16 0.00 0.00 0.16 0.00

Vehicle( # tag inf From To ST ):
8

2 0 0

44 43 42 41 40 39 28 29
0.27 0.83 1.39 1.95 2.51 3.70 4.74
0.27 0.56 0.56 0.56 0.56 1.19 1.04
0.00 0.00 0.16 0.00 0.00 0.29 0.14

Vehicle( # tag inf From To ST ):
4

1              1    2
0.51 1.5; 2 5 9
0.51 1.02 1:06
0.00 0.12 0.16

Vehicle{ # tag inf F r o m  To ST ):
8

5 0 0

2 1 7 13 19 25 31 35
0.50 1.85 2.93 4.04 5.15 6.21 7.37
0.50 1.34 1.08 1.12 1.11 1.06 1.16
0.00 0.44 0.00 0.12 0.11 0.16 0.00

Vehicle( # tag inf From To ST ):
6

4 0 0

6 0 0

37

44

1

2

2

9 0.00 4.11

29 0.00 4.74

2 0.10 2.59

35 0.10 7.37

12 0.10 4.65
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2 3 4 5 6 12
0.50 1.52 2.55 3.60 4.65
0.50 1.01 1.03 1.05 1.05
0.00 0.11 0.13 0.15 0.00

Vehicle( # tag inf Frcxn To ST ): 11200 2 0
6

19 20 19 13 7 1
0.53 1.74 2.91 4.33 5.40
0.53 1.20 1.18 1.42 1.07
0.00 0.10 0.18 0.32 0.00

Vehicle( # tag inf From T o  ST ): 11201 2 0
9

19 25 31 35 36 34 30 24
0.55 1.62 2.75 3.87 4.96 6.06 7.20 8.29
0.55 1.07 1.13 1.12 1.09 1.10 1.14 1.09
0.00 0.00 0.13 0.12 0.00 0.00 0.00 0.19

Vehicle( # tag inf from To ST ): 11202
5

20 26 31 32 33
0.59 1.65 3.21 4.30
0.59 1.06 1.56 1.09
0.00 0.00 0.56 0.00

Vehicle( # tag inf From To ST ) : 11203
4

21 15 9 3
1.45 2.85 4.07
1.45 1.39 1.22
0.85 0.29 0.00

Vehicle( # tag inf From To ST ): 11204
5

21 20 19 13 7
0.61 1.81 2.99 4.15
0.61 1.20 1.18 1.17
0.00 0.10 0.18 0.00

Vehicle( # tag inf F r o m  t o  ST ): 11205
4

21 22 28 33
0.57 2.30 3.37
0.57 1.73 1.07
0.00 0.13 0.17

Vehicle( # tag inf F r o m  To ST ): 11206
5

21 27 32 35 36
0.79 2.28 3.31 4.49
0.79 1.49 1.03 1.18
0.29 0.59 0.00 0.18

19

19

18

20

21

21

21

21

1 14.00 5.40

18 14.00 8.29

33 14.00 4.30

3 14.00 4.07

7 14.00 4.15

33 14.00 3.37

36 14.00 4.49
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Vehicle{ # tag inf From To ST ): 11207 2 0 21 17 14.00 5.81
5

21 40 41 16 17
2.61 3.25 4.61 5.81
2.61 0.63 1.36 1.20
2.11 0.00 0.46 0.10

Vehicle( # tag inf From To ST ): 11208 2 0 22 37 14.00 10.86
8

22 16 42 41 40 39 38 37
1.15 7.80 8.46 9.10 9.71 10.29 10.86
1.15 6.64 0.66 0.64 0.62 0.58 0.57
0.65 5.44 0.00 0.14 0.12 0.00 0.00

Vehicle( # tag inf From To ST ): 11210 2 0 22 10 14.00 4.04
5

22 23 22 16 10
0.61 1.88 2.96 4.04
0.61 1.27 1.08 1.08
0.11 0.00 0.00 0.18

Vehicle( # tag inf From To ST ): 11211 2 0 22 14 14.00 6.27
6

22 28 27 21 15 14
0.89 2.44 3.54 5.05 6.27
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fort.20 - intermediate output file

This file shows the demand generated from each zone for different time intervals. In
DYNASMART, demand generation can follow different user-specified distributions. The
unit for generation is vehicles per second.

iterval : 1
zone number : 1

0.0            0.3
0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3
0.3            0.3
0.3            0.3

zone number : 2
0.3 0.0
0.3 0.3            0.3
0.3 0.3            0.3
0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3

zone number : 3
0.3 0.3            0.0
0.3 0.3
0.3 0.3
0.3 0.3
0.3             0.3
0.3             0.3
0.3              0.3

zone number : 4
0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3

zone number : 5
0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3

0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.0
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3            0.3
0.3            0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.0
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3
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fort-22 - intermediate output file

This output file shows the detail of signal operations. The information is generated for
every time step, and records the change of signal operation. If there is no change, only the
time step sequence will be listed.
AC : actuated signal control
N : node number
Phase : phase sequence
start of green time
end of green time
amber time
(Amber time is fixed as part of the input data.)

tin-e step : 1
N Phase GR : 7 1 0 45 50
N Phase G R : 7 2 50 95 100
AcNPhaseGR : 8 1 0 10 15
AcNPhaseGR : 8 2 15 25 30
N Phase GR : 9 1 0 45 50
N Phase GR : 9 2 50 95 100
N P h a s e G R : 10 1 0 45 50
N P h a s e G R : 10 2 50 95 100
AC N Phase G R : 11 1 0 10 15
AC N Phase G R : 11 2 15 25 30
AC N Phase G R : 14 1 0 10 15
AC N Phase G R : 14 2 15 25 30
N P h a s e G R : 15 1 0 45 50
N Phase G R : 15 2 50 95 100
N P h a s e G R : 16 1 0 45 50
NPhaseGR : 16 2 50 95 100
A c N P h a s e G R : 17 1 0 10 15
AC N Phase G R : 17 2 15 25 30
AC N Phase G R : 20 1 0 10 15
AC N Phase G R : 20 2 15 25 30
N P h a s e G R : 21 1 0 45 50
NPhaseGR : 21 2 50 95 100
N P h a s e G R : 22 1 0 45 50
NPhaseGR : 22 2 50 95 100
A c N P h a s e G R : 23 1 0 10 15
AC N Phase G R : 23 2 15 25 30
A c N P h a s e G R : 26 1 0 10 15
Ac N Phase G R : 26 2 15 25 30
N P h a s e G R : 27 1 0 45 50
N P h a s e G R : 27 2 50 95 100
N Phase G R: 28 1 0 45 50
N P h a s e G R : 28 2 50 95 100
AC N Phase GR : 29 1 0 10 15
AC N Phase G R : 29 2 15 25 30
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N Phase G R : 32 1 0 45 50
N Phase G R : 32 2 50 95 100
N Phase G R : 33 1 0 45 50
N Phase G R : 33 2 50 95 100
time step : 2
time step : 3
time step : 4
time step : 5
time step : 6

AcNPhaseGR :
AcNPhaseGR :
AcNPhaseGR :
AcNPhaseGR :
AcNPhaseGR :
Ac N Phase GR :
A c N P h a s e G R :
AcNPhaseGR :
A c N P h a s e G R :
AcNPhaseGR :
AcNPhaseGR :
AcNPhaseGR :
AcNPhaseGR :
AcNPhaseGR :
AcNPhaseGR :
AC N Phase GR :

8 1 30 75 80
8 2 80 125 130

11 1. 30 75 80
11 2 80 125 130
14 1 30 75 80
14 2 80 125 130
17 1 30 75 80
17 2 80 125 130
20 1 30 75 80
20 2 80 125 130
23 1 30 75 80
23 2 80 125 130
26 1 30 75 80
26 2 80 125 130
29 1 30 75 80
29 2 80 125 130

221



fort.27 - intermediate output file

This file shows initial routes for unequipped vehicles.
Output data includes vehicle ID number, from node, to node and travel path.

vehicle from to 1, 37, 9
path 37 38 39 40 41

vehicle fromm to 2, 44, 29
path 44 43 42 41 40

vehicle from to 3, 1, 8
path 1 2 8 0 0

vehicle from to 4, 1, 2
path 1 7 1 2 0

vehicle from to 5, 2, 35
path 2 1 7 13 19

vehicle fromm to 6, 2, 12
path 2 3 4 5 6

vehicle from to 7, 2, 9
path 2 8 9 0 0

vehicle from to 8, 4, 22
path 4 3 43 42 41

vehicle from to 9, 4, 29
path 4 5 11 17 23

vehicle from to 10, 4, 18
path 4 10 11 12 18

vehicle from to 11, 5, 28
path 5 4 10 16 22

vehicle from to 12, 5, 26
path 5 6 5 4 3
path 26 0 0 0 0

vehicle from to 13, 5, 10
path 5 11 10 0 0

42 43 9

39 28 29

0 0 0

0 0 0

25 31 35

12 0 0

0 0 0

40 22 0

29 0 0

0 0 0

28 0 0

43 42 41
0 0 0

0 0 0

0

0

0

0

0

0

0

0

0

0

0

40
0

0

0

0

0

0

0

0

0

0

0

0

0

27
0

0

vehicle from to 14, 6, 5
path 6 5 4 5 0 0 0 0 0 o
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fort.28 - final output for tagged vehicles

Fort.28 provide detailed information for tagged vehicles at the end of simulation.
J : vehicle ID number
I : link number from where vehicle is generated
DES : destination node number
ST : departure time ( minute )
TT : travel time for this trip ( minutes )
DIS : trip distance ( miles )

J,I,DES,ST,TT,DIS : 3075 1 21
J,I,DES,ST,TT,DIS : 3076 2 44
J,I,DES,ST,TT,DIS : 3077 2 25
J,I,DES,ST,TT,DIS : 3078 3 16
J,I,DES,ST,TT,DIS : 3079 4 14
J,I,DES,ST,TT,DIS : 3080 5 31
J,I,DES,ST,TT,DIS : 3081 6 36
J,I,DES,ST,TT,DIS : 3082 7 7
J,I,DES,ST,TT,DIS : 3083 8 15
J,I,DES,ST,TT,DIS : 3084 10 33
J,I,DES,ST,TT,DIS : 3085 11 17
J,I,DES,ST,TT,DIS : 3086 12 21
J,I,DES,ST,TT,DIS : 3087 13 13
J,I,DES,ST,TT,DIS : 3088 14 36
J,I,DES,ST,TT,DIS : 3089 15 30
J,I,DES,ST,TT,DIS : 3090 16 23
J,I,DES,ST,TT,DIS : 3091 16 20
J,I,DES,ST,TT,DIS : 3092 17 5
J,I,DES,ST,TT,DIS : 3093 18 1
J,I,DES,ST,TT,DIS : 3094 19 21
J,I,DES,ST,TT,DIS : 3095 20 2
J,I,DES,ST,TT,DIS : 3096 21 12
J,I,DES,ST,TT,DIS : 3097 22 5
J,I,DES,ST,TT,DIS : 3098 24 33
J,I,DES,ST,TT,DIS : 3099 25 17
J,I,DES,ST,TT,DIS : 3100 26 14
J,I,DES,ST,TT,DIS : 3101 27 14
J,I,DES,ST,TT,DIS : 3102 29 26
J,I,DES,ST,TT,DIS : 3103 30 25
J,I,DES,ST,TT,DIS : 3104 31 12
J,I,DES,ST,TT,DIS : 3105 32 14
J,I,DES,ST,TT,DIS : 3106 33 8
J,I,DES,ST,TT,DIS : 3107 35 31
J,I,DES,ST,TT,DIS : 3108 36 29
J,I,DES,ST,TT,DIS : 3109 37 19
J,I,DES,ST,TT,DIS : 3110 39 21

5.00 6.04
5.00 15.00
5.00 4.05
5.00 7.11
5.00 4.29
5.00 5.06
5.00 17.03
5.00 5.35
5.00 1.61
5.00 7.29
5.00 2.80
5.00 4.86
5.00 7.17
5.00 7.41
5.00 5.19
5.00 3.96
5.00 8.80
5.00 2.76
5.00 0.52
5.00 4.31
5.00 3.99
5.00 6.99
5.00 6.70
5.00 8.31
5.00 5.50
5.00 1.70
5.00 4.39
5.00 7.82
5.00 7.89
5.00 4.38
5.00 5.44
5.00 4.18
5.00 8.93
5.00 5.71
5.00 9.52
5.00 8.99

2.25
2.75
1.75
2.75
1.75
2.25
4.75
2.25
0.75
3.75
1.25
1.75
2.75
3.25
2.25
1.75
3.25
1.25
0.25
1.75
1.75
2.75
2.75
3.25
2.25
0.75
1.75
2.25
4.25
1.75
2.25
1.75
4.75
2.25
3.75
3.25

223



REFERENCES

Aho, A., Hopcroft, J., and Ullman, J. (1983). Data Structures and Algorithms, Addison-
Wesley Publishing Co., Reading, MA.

Aho, V. A., Sethi, R., and Ullman, J. (1987). Compilers - Principles. Techniques and
Tools, Addison-Wesley Publishing Co., Reading, MA.

Albrecht, R. (1968). “Determination of minimal paths in finite, directed, weighted
graphs.” Computing 3, pp. 184-193. (in German.)

Allen, J.R., Kennedy, K., Porterfield, G., and Warren, J. (1983) “Conversion of
Control Dependence to Data Dependence,” ACM Computing Machinery, 1983.

Almasi, G.S. and Gottlieb, A. (1989). Highly Parallel Computing, The
Benjamin/Cummings Publishing Co., Inc., CA.

Bellman, R. (1958). “On a routing problem,“. Ouart. Appl. Math, 16, pp 87-90.

Ben-Akiva, M. (1985). “Dynamic Network Equilibrium Research,” Transnortation
Research, Vol. 19A, No.5/6, pp. 429-43 1.

Bertsekas, D.P. and Tsitsiklis, J.N. (1989). Parallel and Distributed Computation;
Numerical Methods, Prentice-Hall, Englewood Cliffs, N.J.

Bertsekas, D.P. (1987). “Dynamic Programming: Deterministic and Stochastic Models,”
Prentice-Hall, Englewood Cliffs, N.J.

Bertsekas, D.P. (1991). Linear Network Optimization: Algorithms and Codes, The MIT
Press, Cambridge, MA.

Boyce, D.E. (1984). “Urban Transportation Network Equilibrium and Design Models:
Recent Achievements and Future Prospects,” Environment and Planning A 16, pp. 1445
1474.

Boyce, D.E. (1989). “Route Guidance Systems for Managing Urban Transportation
Networks: Review and Prospects,” presented at the Tenth Italian Regional Science
Association Conference, Rome, Italy.

Brawer, S. (1989). Introduction to Parallel Programming, Academic Press, Inc.

Carey, M. (1986). “A Constraint Qualification for a Dynamic Traffic Assignment Model,”
Transportation Science, Vo1.20,  pp. 55-58.

Carey, M. (1987). “Optimal Time Varying Flows On Congested Networks,” Operations
Research, Vo1.35, No. 1, pp. 58-69.

Carey, M. (1992). “Nonconvexity of the Dynamic Assignment Problem,” Transportation
Research, Vol. 26B, No. 2, pp. 127-133.

224



Carre, B.A. (1971). “An algebra for network routing problems,” J. Inst. Math Appl, 7,
pp. 273-294.

Carson, J.S. and Law, A.M. (1977). “A note on Spirals algorithm for the all-pairs
shortest-path problem,” SIAM J. Comput. 6, pp. 696-699.

Chandler, R.E., Herman, R., and Montroll, E.W. (1958). “Traffic Dynamics: Studies in
Car-Following,” Operation Research, Vo1.6, No.2,  pp. 165- 184.

Chang, G.L., Mahmassani, H.S. and Herman, R. (1985). “A Macroparticle Traffic
Simulation Model to Investigate Peak-Period Commuter Decision Dynamics,”
Transportation Research Record 1005, pp. 107-120.

Chang, G.L., Mahmassani, H.S., and Engquist, M. L. (1988). ” System Optimal Trip
Scheduling and Routing in Commuting Networks,” Transportation Research Record 1251,
pp. 54-65.

Clarke, S., Krikorian, R., and Rousen, J. (1963). “Computing the N best loopless paths
in a network” J. Soc. Indust. Appl. Math, 11, pp. 1096-l 102.

Cooke, K.L. and Halsey, E. (1966). “The Shortest Route Through a Network with Time-
dependent Internodal Transit Times”, Journal of Mathematical Analysis and Application
14, pp. 493-498.

Cray Research Inc, Parallel Processing Guide (1991). CF77 Vo1.4. Cray Research, Inc,
Mendota Heights MN.

Dafermos, S. (1980). “Traffic Equilibrium and Variational Inequalities”, Transportation
Science 14, pp. 42-54.

Dafermos, S. (1982). “The General Multimodal Network Equilibrium Problem with Elastic
Demand”, Networks 12, pp. 57-72.

D’Ans, G.C. and Gazis, D.C. (1976). “Optimal Control of Oversaturated Store and
Forward Transportation Networks”, Transportation Science 10, pp. 1-19.

Dantzig, G.B. (1957). “Discrete variable problems.” Operations Research 5, pp. 266-277.

Dantzig, G.B. (1960). “On the shortest route through a network. Management Science 6,
pp. 187-190.

Denardo, E.V. and Fox, B.L. (1979). “Shortest-route methods: 1. reaching, pruning, and
buckets.” Operations Research 27, pp. 161-186.

Denardo, E.V. and Fox, B.L. (1979). “Shortest-route methods: 2. group knap-sacks,
expanded networks, and branch-and-bound.” Operations Research 27, pp. 215-248.

Deo, N. and Pang, C. (1984). “Shortest Path Algorithms: Taxonomy and Annotation.”
Networks 14, pp. 275-323.

225



Dial, R.B., Glover, F., Karney, D. and Klingman, D. (1979). “A computational analysis
of alternative algorithms and labeling techniques for finding shortest path trees.” Networks
9, pp. 215-248.

Dial, R.B., (1969). “Algorithm 360: shortest path forest with topological ordering.”
Comm. ACM 12, pp. 632 - 633.

Dijkstra, E.W. (1959). “A note on two problems in connexion with graphs.” Numer,
Math, 1, pp. 269-27 1.

Drew, D. R. (1968). Traffic Flow Theory and Control , McGraw-Hill Book Company,
New York.

Dreyfus, S.E. (1969). “An Appraisal of Some Shortest-Path Algorithms”, Operations
Research 17, pp. 395-412.

Elmaghraby, S.E. (1970). “The theory of networks and management science.” Part 1,
Management Science 17, pp. l-34.

Engquist, M. (1982) “A Successive Shortest Path Algorithm for the Assignment Problem”,
INFOR 20, pp. 370-384.

Even, S. (1979). Graph Algorithms, Md. Computer Science Press.

Farbey, B.A., Land, A.H. and Murchland, J.D. (1967). “The cascade algorithm for
finding all shortest distances in a directed graph”, Management Science 14, pp. 19-28.

Federal Highway Administration (1980). “Traffic Network Analysis with NETSIM - A
User Guide”, FHWA-IP-80-3, FHWA, Washington, D. C..

Fisk, C.S. and Boyce, D.E. (1983). “Alternative Variational Inequality Formulations of the
Network Equilibrium-Travel Choice Problem”, Transportation Science 17, pp. 454-463.

Florian, M.S., Nguyen, S. and Pallottino,  S. (1981). “A Dual Simplex Algorithm for
Finding All Shortest Paths,” Networks 11, pp. 367-378.

Floyd, R.W. (1962). “Algorithm 97: shortest path”, Comm. ACM 5, p. 345.

Ford, L.R. and Fulderson, D.R. (1962). Flows in Networks, Princeton University,
Princeton, NJ.

Fox, B.L. (1973). “Calculating k-th shortest paths,” INFORM, pp. 66-70.

Fox, B.L. (1975). “More on k-th shortest paths”, Comm. ACM 18, p. 279.

Fox, B.L. (1978). “Data Structures and Computer Science Techniques in Operations
Research”, Operations Research 26, pp. 686-717.

Frank, H. (1969). “Shortest paths in probabilistic graphs”, Operations Research 17, pp.
583-599.

226



Fredman, M.L. (1976). “New bounds on the complexity of the shortest path problem”,
SIAM J. Comput, 5, pp. 83-89.

Friesz, T.L., Luque, J., Tobin, R.L. and Wie, B.W. (1989). “Dynamic Network Traffic
Assignment Considered as a Continuous Time Optimal Control Problem”, Operations
Research Vo1.37, No.6, pp. 893-901.

Gallo, G.S. and Pallotino, S. (1986). “Shortest Path Methods: A Unified Approach,”
Math. Programming Study 26, pp. 38-64.

Gallo, G.S. and Pallotino, S. (1988). “Shortest Path Algorithms,” Annals of Operations
Research 7, pp. 3-79.

Gartner, N.H. (1982). “OPAC: A Demand-Responsive Strategy for Traffic Signal
Control”, Transportation Research Record 906, pp. 75-8 1.

Gartner, N.H. (1983). “Simulation Study of OPAC : A Demand-Responsive Strategy for
Traffic Signal Control”, Transportation and Traffic Theory, Eds., Gartner, N.H. and
Wilson, N.H.M., Elsevier Science Publishing Company.

Gazis, D. C., Herman, R., and Rothery, R.W., (1961). " Non-linear Follow the Leader
Models of Traffic Flow,” Operation Research, Vo1.9, No.4,  PP.545-567.

Gerlough, D. L. and Huber, M.J., (1971). “Traffic Flow Theory”, Special Report 165,
Transportation Research Board, Washington, D. C.

Ghali, M.O. and Smith, M.J. (1991). “New Dynamic Model to Evaluate the Performance
of Urban Traffic Control Systems and Route Guidance Strategies,” Transnortation
Research Record 1306, pp 33-39.

Ghali, M.O., Smith, M.J. (1991). “A Dynamic Traffic Assignment Model”, 71st TRB
Annual Meeting, Washington D.C.

Ghali, M.O. and Smith, M.J. (1992). “Optimal Dynamic Traffic Assignment of a
Congested City Network”, Proceedings of the Second International Capri Seminar on
Urban Traffic Networks, Capri, Italy, July 1992.

Gilsinn, J. and Wizgall, C. (1973). “A performance comparison of labeling algorithms for
calculating shortest path trees”, Technical Note 772, National Bureau of Standards,
Washington, DC.

Glover, F., Glover, R. and Klingman, D. (1984). “Computational study of an improved
shortest path algorithm”, Networks 14, pp. 25-36.

Glover, F., Glover, R. and Klingman, D. (1986). “The Threshold Shortest Path
Algorithm”, Networks 16, No. 1.

Glover, F., Klingman, D., Phillips, N. and Schneider, R.F. (1985). “New Polynomial
Shortest Path Algorithms and Their Computational Attributes,” Management Science 31,
pp.1106-1128.

227



Glover, F., Klingman, D. and Napier, A. (1974). “A note on finding all shortest paths”,
Transportation Science 8, pp. 3-12.

Glover, F., Klingman, D. and Philips, N. (1985). “A new polynomially bounded Shortest
Path Algorithm”, Operations Research 33, pp. 65-73.

Golden, B.L. (1976). “Shortest-path algorithms: a comparison”, Operations Research 24,
pp. 1164-l 168.

Golden, B.L. and Ball, M. (1978). “Shortest paths with Euclidean distances: An
explanatory model”, Networks 8, pp. 297-314.

Golden, B.L. and Magnanti, T.L. (1977). “Deterministic Network Optimization - A
bibliography”, Networks 7, pp. 149-183.

Goldman, A.J. and Nemhauser, G.L. (1967). “A transport improvement problem
transformable to a best-path problem”, Transportation Science 1, pp. 295-307.

Goto,  S., Ohtsuki, T. and Yohimura, T. (1976). “Sparse matrix techniques for the shortest
path problem”, IEEE Trans. Circuits and Systems CAS-23, pp. 752-758.

Goto, S. and Sangiovanni-Vincentelli, A. (1978). “A New Shortest Path Updating
Algorithm”, Networks 8, pp. 341-372.

Habbal, M.B., Koutsopoulos, H.N. and Let-man, S.R. “A decomposition algorithm for
the all-pairs shortest path problem on massively parallel computer architectures”, To appear
in Transportation Science.

Hadlock, F.O. (1977). “A shortest path algorithm for grid graphs.” Networks 7, pp. 323-
334.

Hakimi, S.L. (1972). “Shortest paths in graphs-a review”, IEEE International Symposium
pn Circuit Theory, pp. 368-369.

Hall, R.W. (1986). “The Fastest Path Through a Network with Random Time-dependent
Travel Times”, Transportation Science 20, pp. 182-l 88.

Halpem, J. and Priess, I. (1974). “Shortest path with time constraints on movement and
parking”, Networks 4, pp. 241-253.

Hart, P.E., Nilsson, N.J. and Raphael, B. (1968). “A formal basis for the heuristic
determination of minimum cost paths”, IEEE Trans. System Sci. and Cybemetics SSC-4,
pp. 100-107.

Hendrickson, C. and Kocur, G. (1981). “Schedule Delay and Departure Time Decisions in
a Deterministic Model”, Transportation Science 15, pp. 62-77.

Hendrickson, C. and Plank, E. (1984). “The Flexibility of Departure Times for Work
Trips”, Transportation Research 18A, pp. 25-36.

228



Herman, R. and Ardekani, S. (1984). “Characterizing Traffic Conditions in Urban Areas”,
Transportation Science, Vol. 18, No.2.

Herman, R. and Rothery, R.W. (1963). ” Car-Following and Steady State Flow,” Theory
of Traffic Flow Symposium Proceedings, pp. l- 11.

Herman, R. and Prigogine, I. (1979). “A Two-Fluid Approach to Town Traffic”, Science
204, pp. 148-151.

Ho, J.K. (1980). “A Successive Linear Optimization Approach to the Dynamic Traffic
Assignment Problem”, Transportation Science 14, p 295-305.

Hoffman, A.J. and Markowitz, J.M. (1963). “A note on shortest path, assignment, and
transportation problems”, Naval Res. Logist. Quart 10, pp. 375-379.

Hoffman, A.J. and Winograd, S. (1972). “Finding all shortest distances in a directed
network”, IBM J. Res. Develop, 16, pp. 412-414.

Hoffman, W. and Pavley, R. (1959). “A method for the solution of the n-th best path
problem”, J. Assoc. Comput. Mach, 6, pp. 506-514.

Hu, T.C. (1967). “Revised matrix algorithms for shortest paths”, SIAM J. Appl. Math, 15
pp. 207-218; errata 15 (1967) 1517.

Hu, T.C. (1969). Integer Programming and Network Flows, Addison-Wesley, Reading,
MA.

Hu, T.Y., Rothery, R.W. and Mahmassani, H.S. (1992).“DYNASMART: Dynamic
Network Assignment-Simulation Model for Advanced Road Telematics”, Working Paper
DTFH61-90-C-00074-TWPl,  Center for Transportation, The University of Texas at
Austin.

Hurdle, V.P. (198 1). “Equilibrium Flows on Urban Freeways”, Transportation Science
15, p 255-293.

Janson, B.N. (1991). “Dynamic Traffic Assignment with Schedule Delay”, Presented at
the 7 1st TRB Annual Meeting, Washington D.C.

Jayakrishnan, R. (1992) “In-Vehicle Information Systems for Network Traffic Control: A
Simulation Framework to Study Alternative Guidance Strategies”, PhD Dissertation,
Department of Civil Engineering, The University of Texas at Austin.

Jensen, P.A. and Barnes, J.W. (1980). Network Flow Programming, Wiley, N.Y.

Johnson, D.B. (1973). “A note on Dijkstra’s shortest path algorithm”, J. Assoc. Comput
Mach, 20, pp. 385-388.

Johnson, D.B. (1977). “Efficient algorithms for shortest paths in sparse networks”, L
Assoc. Comput. Mach, 24, pp. 1-13.

229



Johnson, E.L. (1972). “On shortest paths and sorting”, Proceedings of 25th Conference of
the Association for Computing Machinery, Boston, pp. 529-539.

Joksch, H.C. (1966). “The shortest route problem with constraints”, J, Math. Anal. Appl.
14, pp. 191-197.

Jonker, R. and Volgenant, A. (1987). “A Shortest Augmenting Path Algorithm for Dense
and Sparse Linear Assignment Problems”, Computing 38, pp. 325-340.

Kalaba, R. (1960). “On some communication network problems”, Combinatorial Anal,
Proc. Symp. Appl. Math, 10, pp. 261-280.

Katoh, N., Ibaraki, T. and Mine, H. (1978). “An O(Kn2)  algorithm for obtaining the K-th
shortest simple paths in an undirected graph with non-negative arc length”, Electron.
Commun. Japan 61-A, pp. 1192-1206.

Katoh, N., Ibaraki, T. and Mine, H. (1982). “An efficient algorithm for k shortest simple
paths”, Networks 12, pp. 41 l-427.

Kaufman, D.E. and Smith, R.L. (1990). “Minimum Travel Time Paths in Dynamic
Networks with Application to Intelligent Vehicle/Highway Systems” Working Paper,
University of Michigan.

Kaufman, D.E. and Smith, R.L. (1993). “Fastest Paths in Time-Dependent Networks for
IVHS Application”, IVHS Journal, Vol. 1, No. 1, pp l- 11.

Kennington, J. and Helgason, R. (1980). Algorithms for Network Programming, Wiley,
N.Y.

Kershenbaum, A. (198 1). “A Note on Finding Shortest Path Trees”, Networks 11, pp.
399-400.

Kirby, R.F. and Potts, R.B. (1969). “The minimum route problem for networks with turn
penalties and prohibitions”, Transportation Research 3, pp. 397-408.

Klafszky, E. (1972). “Determination of shortest path in a network with time-dependent
edge-lengths”, Math. Operations for Sch. Statist 3, pp. 255-257.

Knuth, D.E. (1977). “A generalization of Dijkstra’s algorithm”, Information Processing
Lett, 6, pp. l-5.

Land, A.H. and Stairs, S.W. (1967). “Extension of the cascade algorithm to large
graphs”, Management Science 14, pp. 29-33.

Law, A.M. and Kelton, W.D. (1982). Simulation Modeling and Analysis, McGraw-Hill
Book Company.

Lawler, E.L. (1972). “A procedure for computing the K best solutions to discrete
optimization problems and its application to the shortest path problem”, Management
Science 18, pp. 401-405.

230



Lawler, E.L. (1976). “Combinatorial Optimization: Networks and Matroids”, Holt,
Rinehart and Winston, New York.

Lawler, E.L. (1977). “Comment on computing the k shortest path in a graph”, Comm,
ACM 20, pp. 603-604.

Leboeuf, J.N., Tajima, T. and Dawson, J.M. (1979). “A Magnetohydrodynamic Particle
Code for Fluid Simulation of Plasmas”, Journal of Comparative Physics 3 1, 3, pp 379-
408.

Lee, C.E., Rioux, T.W., Savur, V.S. and Copeland, C.R. (1977). “The TEXAS Model
for Intersection Traffic”,’ Development. Research Report No. 184-1, Center for
Transportation Research, The University of Texas at Austin,TX.

Lee, C.Y. (1961). “An algorithm for path connections and its applications”, IRE Trans,
Electronic Comput 10, pp. 346-365.

Lee, C.Y. (1962). “A note on the N-th shortest path problem”, IRE Trans. Electronic
Comput 11, pp. 572-573.

Lin, H.J., Machemehl, R.B., Lee, C.E. and Herman, R. (1984). “Guidelines for Use of
Left-Turn Lanes and Signal Phases”, Research Report 258- 1 Center for Transportation
Research, The University of Texas at Austin.

Lindley, J. (1989). “Urban Freeway Congestion Problems and Solutions: An Update”,
Journal 59, No. 12, p 21-23.

Lisco, T.E. (1983). “Procedure for Predicting Queues and Delays on Expressways in
Urban Core Areas”, Transportation Research Record 944, pp. 148-154.

Mahmassani, H.S. (1990). “Dynamic Models of Commuter Behavior: Experimental
Investigation and Application to the Analysis of Planned Traffic Disruptions”,
Transportation Research Vol. 24A, No. 6, pp. 465-484.

Mahmassani, H.S. and Chang, G.L. (1985) ,” Dynamic Aspects of Departure Time Choice
Behavior in a commuting System: Theoretical Framework and Experimental Analysis”,
Transportation Research Record, 1037, pp.88- 101.

Mahmassani, H.S. and Chang, G.L. (1986) ,” Experiments with Departure Time Choice
Dynamics of Urban Commuters”, Transportation Research, Vol. 20B, No. 4. pp. 297-
320.

Mahmassani, H.S. and Chen, P.S. (1991). “Comparative assessment of origin-based and
en-route real-time information under alternative user behavior”, Transportation Research
Record 1306, pp. 62-81.

Mahmassani, H.S. and Herman, R. (1984). ” Dynamic User Equilibrium Departure Times
and Route Choice in Idealized Traffic Arterials”, Transportation Science 18, pp. 362-384.

231



Mahmassani, H.S., Herman, R., Walton, C.M., Jones, E.G., Baaj, M.H. and
Jayakrishnan, R. (1989). “Travel Time Characteristics and Opportunities for Real-Time
Information Systems in an Urban Commuting Corridor”, Research Report GM-1989-F,
Center for Transportation Research, The University of Texas at Austin.

Mahmassani, H.S., Hu, T. and Jayakrishnan, R. (1992). “Dynamic Traffic Assignment
and Simulation for Advanced Network Informatics”, Proceedings of the Second
International Capri Seminar on Urban Traffic Networks, Capri, Italy.

Mahmassani H.S., Hu, T.Y., Peeta, S. and Ziliaskopoulos, A. (1993), Dynamic Traffic
Assignment and Simulation Procedures for ADIS/ATMS Applications: Technical
Documentation”, Technical Report DTFH61-90-R-00074-FT, Center for Transportation
Research, The University of Texas at Austin.

Mahmassani, H.S. and Jayakrishnan, R. (1990). “Dynamic Simulation-Assignment
Methodology to Evaluate In-Vehicle Information Strategies in Urban Traffic Networks”,
Proceeding of Winter Simulation Conference, New Orleans, LA, pp. 763-769.

Mahmassani, H.S. and Jayakrishnan, R. (1991). “System performance and motor
response under real-time information in a congested traffic corridor”, Transportation
Research 25A, pp. 293-308.

Mahmassani, H.S. and Mouskos, K.C. (1988). “Some Numerical Results on the
Diagonalization Algorithm for Network Assignment with Asymmetric Interactions Between
Cars and Trucks”, Transportation Research B, 22B, pp. 275-290.

Mahmassani, H.S. and Mouskos, K.C. (1989). “Vectorization of Transportation Network
Equilibrium Assignment Codes”, in Impacts of Recent Commuter Advances on Operations
Research, North-Holland.

Mahmassani, H. S. and Peeta, S. (1992). “System Optimal Dynamic Assignment for
Electronic Route Guidance in a Congested Traffic Network”, Proceedings of The 2nd
International Capri Seminar on Urban Traffic Networks, Capri, Italy, July 1992.

Mahmassani, H.S. and Peeta, S. (1993). “Network Performance under System Optimal
and User Equilibrium Dynamic Assignments: Implications for ATIS”, Transportation
Research Record 1408, pp.83-93.

Mahmassani, H. S., Peeta, S., Chang, G. L. and Junchaya, T., (1992) “A review of
dynamic assignment and traffic simulation models for ATIS/ATMS applications”,
Technical Report DTFH61-90-R-00074-1, CTR, The University of Texas at Austin.

Mahmassani, H.S., Peeta, S., Hu, T. and Rothery, R. (1993). “Effect of Real-Time
Information on Network Performance under Alternative Dynamic Assignment Rules”, 21st
PTRC Annual Summer Conference Proceeding, Manchester, UK.

Mahmassani, H.S. and Stephan, D.G. (1988). “Experimental Investigation of Route and
Departure Time Dynamics of Urban Commuters”, Transportation Research Record 1203,
pp. 69-84.

232



Mahmassani, H.S., Williams, J.C. and Herman, R. (1984). “Investigation of Network-
Level Traffic Flow Relationships: Some Simulation Results, Transportation Research
Record 971, pp 121-130.

Mahmassani, H.S., Williams, J.C. and Herman, R. (1987). “Performance of Urban
Transportation Networks”, Transportation and Traffic Theory, Editors: Gartner, N.H. and
Wilson, N.H.M., Elsevier Science Publishing Co.

Marshall, J. (1973). “On Lawler’s K best solutions to discrete optimization problems”,
Management Science 19, pp. 834-835.

Masuda, E. (1977). “A study of the computational efficiency of shortest path algorithms”,
Master’s Thesis, University of Electra-Communications.

May, A.D. (1990). Traffic Flow Fundamentals, Prentice Hall, Englewood Cliffs, N. J.

Merchant, D.K. and Nemhauser, G.L. (1978a). “A Model and an Algorithm for the
Dynamic Traffic Assignment Problems”, Transportation Science, Vol. 12, No.3,  pp. 183-
199.

Merchant, D.K., and Nemhauser, G.L. (1978b). “Optimality Conditions for a Dynamic
Traffic Assignment Model”, Transportation Science, Vol. 12, no.3, pp. 200-207.

Midler, J.L. (1969). “A Stochastic Multiperiod Multimode Transportation Model”,
Transportation Science 3, pp. l-7.

Minieka, E. (1974). “On computing sets of shortest paths in a graph”, Comm. ACM 17,
pp. 351-353.

Minieka, E. (1978). Optimization Algorithms for Networks and Graphs, Dekker, New
York.

Minieka, E. and Shier, D.R. (1973). “A note on an algebra for the k best routes in a
network”, J. Inst. Math. Appl, 11, pp. 145-149.

Minty, G.J. (1958). “A variant on the shortest-route problem”, Operations Research, 6,
pp. 882.

Mobility 2000 (1990). “Proceedings of the National Workshop on IVHS”, Dallas.

Moore, E.F. (1959). “The shortest path through a maze”, Proceedings of the International
Symposium on the Theory of Switching, Part II, 1957, Harvard University, Cambridge,
MA, pp. 285-292.

Moravek, J. (1970). “A note upon minimal path problem”, J. Math. Anal. Appl. 30, pp.
702-7 17.

Nagumey, A. (1984). “Comparative Tests of Multimodal Traffic Equilibrium Methods”,
Transportation Research B, 18B, pp. 469-485.

233





Pollack, M. and Wiebenson, W. (1960). “Solutions of the shortest-route problem-a
review”, Operations Research 8, pp. 224-230.

Pollack, M. and Wiebenson, W. (1961). “Comments on “The shortest path problem” by
Peart, Randolph, and Bartlett.” Operations Research 9, pp. 411-412.

Potts, R.B. and Oliver, R. (1972). Flows in Transportation Networks, Academic, New
York.

Ran, B., Boyce, D.E. and LeBlanc, L.J. (1993). “A New Class of Instantaneous Dynamic
User-Optimal Traffic Assignment Models”, Operations Research, Vol. 41, No. 1.

Ran, B., and Shimazaki, T. (1989). “A General Model and Algorithm for the Dynamic
Traffic Assignment Problems”, Proceedings of the Fifth World Conference on Transport
Research, Yokohoma, Japan.

Robillard, P. (1974). “Multipath Traffic Assignment with Dynamic Input Flows”,
Transportation Research 8, pp. 567-573.

Rosenthal, A. (1974). “On finding shortest paths in nonnegative networks”, Discrete
Math. 10, pp. 159-162.

Sakarovitch, M. (1968). “The k shortest routes and k shortest chains in a graph”,
Transportation Research 2, pp. 1- 11.

Saksena, J.P. and S. Kumar, S. (1966). “The routing problem with K specified nodes”,
Operations Research 14, pp. 909-913.

Shapiro, J.F. (1968) “Shortest route methods for finite state space deterministic dynamic
programming problems “, SIAM J. Appl. Math, 16, pp. 1232-1250.

Sheffi, Y. (1985). Urban Transportation Networks: Equilibrium Analysis with
Mathematicial Programming Methods, Prentice- Hall,  NJ.

Sheffi, Y., Mahmassani, H.S. and Powell, W. (1982). “A Transportation Network
Evacuation Model”, Transportation Research 16A, pp. 209-2 18.

Sheffi, Y. and Powell, W. (1982). “An Algorithm for the Equilibrium Assignment
Problem with Random Link Times”, Networks 12, pp. 191-207.

Shier, D.R. (1974). “Computational experience with an algorithm for finding the k shortest
paths in a network”, J. Res. Nat. Bur. Standards, Sect. B. 78B, pp. 139-165.

Shier, D.R. (1976). “Iterative methods for determining the k shortest paths in a network”,
Networks 6, pp. 205-229.

Shier, D.R. (1979). “On algorithms for finding the k shortest paths in a network”,
Networks 9, pp. 195-214.

235



Shier, D.R. Witzgall, C. (1981). “Properties of Labeling Methods for Determining
Shortest Path Trees,” 1. Res. Natl. Bureau of Standards 86, pp. 317.

Skiscim, CC. and Golden, B.L. (1987). “Computing k shortest path lengths in Euclidean
networks " ,, Networks 17, pp. 341-352.

Smeed, R.J. (1967). “Some circumstances in which vehicles will reach their destinations
earlier by starting later “, Transportation Science 1, pp. 308-317.

Smith, M.J. (1991). “A New Dynamic Traffic Model and the Existence and Calculation of
Dynamic User Equilibria on Congested Capacity-Constrained Road Networks”, Presented
at the 71st Annual Meeting of TRB, Washington DC.

Spira, P.M. (1973). “A new algorithm for finding all shortest paths in a graph of positive
arcs in average time O(n2 log2n) “, SIAM J. Comput, 2, pp. 28-32.

Spira, P.M. and Pan, A (1975) “On finding and updating spanning trees and shortest
paths”, SIAM J. Comput 4, pp. 375-380.

Steenbrink, PA. (1974),  Optimization of Transport Networks, Wiley, Bristol .

Suurballe, J.W. (1974). “Disjoint paths in networks”, Networks 4 , pp. 125-145.

Tabourier, Y. (1973). “All shortest distances in a graph. An improvement to Dantzig’s
inductive algorithm”, Discrete Math, 4, pp. 83-87.

Tarjan,  R.E. (1983). “Data Structures and Network Algorithms, SIAM regional conference
series in mathematics,” SIAM, Philadelphia, PA.

Tittemore, L.H., Birdsall, M.R., Hill, D.M. and Hammond, R.H. (1972). “An Analysis
of Urban Area Travel by Time of Day”, U.S. Department of Transportation, Washington,
D.C.

Transportation Research Board (198 1). “The Application of Traffic Simulation Models”,
Special Report 194, Transportation Research Board, Washington, D.C.

Transportation Research Board (1985). “Highway Capacity Manual”, Special Report 209,
Transportation Research Board, Washington, D.C.

Transportation Research Center (1987). “The TRANSYT-7F User’s Manual”, University
of Florida, Gainesville, Fla.

Tseng, P., Bertsekas, D.P. and Tsitsiklis, J.N. (1990). “Partially Asynchronous Parallel
Algorithms for Network Flow and Other Problems,” SIAM J. Control and Optimization 28
pp. 678-710.

U. S. Department of Transportation (1992). “IVHS Strategic Plan Report to Congress”,
Washington, D.C.

236



Van Aerde, M., Voss, J. , Ugge, A. and Case, E. R. ( 1989) “Managing Traffic
Congestion in Combined Freeway and Traffic Signal Networks,” ITE Journal Feb, pp.
36-42.

Van Aerde, M. and Yagar, S. (1988) “Dynamic Integrated Freeway/Traffic Signal
Networks: Problems and Proposed Solutions,” Transportation Reseach Vol. 22A, No.6.
pp. 435-443.

Van Aerde, M. and Yagar, S. (1988) “Dynamic Integrated Freeway/Traffic Signal
Networks: A Routing-Based Modelling Approach,” Transportation Research Vol. 22A,
No. 6.pp. 445-453.

Van Vliet, D. (1978). “Improved shortest path algorithm for transport networks.”
Transportation Research 12, pp. 7-20.

Wallace, C.E., White, F. J., and Wilbur, A. D. (1991).” A Permitted-Movement Model
for TRANSYT-7F”, Transportation Research Record 1112, pp. 45-5 1.

Weintraub, A. (1973). “The shortest and K-shortest routes as assignment problems”,
Networks 3, pp. 61-73.

Wie, B.W. (1990). “Dynamic Analysis of User Optimized Network Flows With Elastic
Travel Demand”, presented at the 70th TRB Annual Meeting, Washington, D.C.

Williams, T.A. and White, G.P (1973). “A note on Yen’s algorithm for finding the length
of all shortest paths in n-node nonnegative-distance network”, J. Assoc. Comput. Mach,
20, pp. 389-390.

Wolsey, L.A. (1973). “Generalized dynamic programming methods in integer
programming I’, Math. Prog, 4, pp. 222-232.

Wongseelashote, A. (1976). “An algebra for determining all path-values in a network with
application to k-shortest-paths problems " , Networks 6, pp. 307-334.

Yen, J.Y. (1969). “Some algorithms for finding the shortest routes through general
networks”, In Computing Methods . Optimization Problems-2, L.A. Zadeh, L.W.
Neustadt, and A.V. Balakrishnan, Eds., Academic New York, pp. 377-388.

Yen, J.Y. (1970a). “A shortest path algorithm”, Ph.D. Thesis, University of California,
Berkeley.

Yen, J.Y. (1970b). “An algorithm for finding shortest routes from all source nodes to a
given destination in general networks”, Ouart. Appl. Math, 27, pp. 526-530.

Yen, J.Y. (197Oc). “Finding the K shortest loopless paths in a network”, Management
Science17, pp. 712-716.

Yen, J.Y. (1971a). “On Elmaghraby’s “The theory of networks and management science.”
Management Science 18, pp. 84-86.

237



Yen, J.Y. (1971b). “On Hu’s decomposition algorithm for shortest paths in a network.
Operations Research 19, pp.983-985.

Yen, J.Y. (1972a). “Finding the lengths of all shortest paths
3

in n-node nonnegative
distance complete networks using l/2 n3 additions and n comparisons”, J. Assoc,
Comput. Mach, 19, pp. 423,424.

Yen, J.Y. (1972b). “On the efficiency of a direct search method to locate negative cycles in
a network”, Management Science 19, pp. 333-335.

Yen, J.Y. (1975). “Shortest Path Network Problems”, Mathematical Systems in
Economics, Heft 18. Hain, Meisenheim am Glan.

Yuval, G. (1976). “An algorithm for finding all shortest paths using N2.8 1 infinite-
precision multiplications “, Information Processing Lett 4, pp. 155- 156.

Ziliaskopoulos, A. and Mahmassani, H.S. (1992). “Design and Implementation of a
Shortest Path Algorithm with Time-Dependent Arc Costs”, Proceedings of the 5th
Advanced Technology Conference, Washington D.C., pp. 1072-1093.

Ziliaskopoulos, A. and Mahmassani, H.S. (1993). “A Time-Dependent Shortest Path
Algorithm For Real-Time Intelligent Vehicle/Highway Systems Applications”,
Transportation Research Record 1408.

S.A.Zenios. (1991). “On the fine-grain decomposition of multicommodity transportation
problems”, To appear in SIAM joumal on optimization.

238


